A Question of Gross and Weighted Sharing of a Finite Set by Meromorphic Functions *

Indrajit Lahiri ${ }^{\dagger}$

Received 9 August 2001

Abstract

We prove a uniqueness theorem for meromorphic functions sharing one finite set with weight two and this improves some results of Yi [11], Li and Yang [8] and Fang and Hua [2].

1 Introduction

Let f be a meromorphic function defined in the open complex plane \mathbb{C}. For $S \subset \mathbb{C} \cup\{\infty\}$ we define by $E_{f}(S)$ the set

$$
E_{f}(S)=\cup_{a \in S}\{z: f(z)-a=0\}
$$

where an a-point of multiplicity m is counted m times.
In 1976, Gross [3] proved that there exist three finite sets S_{1}, S_{2}, S_{3} such that any two entire functions f, g satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=1,2,3$ must be identical. In the same paper Gross asked the following question: Can one find two (or even one) finite sets S_{1} and S_{2} such that any two entire functions f and g satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=1,2$ must be identical?

A set S for which two meromorphic functions f, g satisfying $E_{f}(S)=E_{g}(S)$ become identical is called a unique range set of meromorphic functions (cf. [4, 8]).

In 1982, Gross and Yang [4] proved the following theorem.
THEOREM A. Let $S=\left\{z: e^{z}+z=0\right\}$. If two entire functions f, g satisfy $E_{f}(S)=E_{g}(S)$ then $f \equiv g$.

Since the set $S=\left\{z: e^{z}+z=0\right\}$ contains infinitely many elements, the above result does not answer the question of Gross.

In 1994, Yi [10] exhibited a finite set S containing 15 elements which is a unique range set of entire functions and provided an affirmative answer to the question of Gross.

In 1995, Yi [11] and Li and Yang [8] independently proved the following result which gives a better answer to the question of Gross.

[^0]THEOREM B. Let $S=\left\{z: z^{7}-z^{6}-1=0\right\}$. If two entire functions f, g satisfy $E_{f}(S)=E_{g}(S)$ then $f \equiv g$.

Extending Theorem B to meromorphic functions, recently Fang and Hua [2] proved the following theorem.

THEOREM C. Let $S=\left\{z: z^{7}-z^{6}-1=0\right\}$. If two meromorphic functions f, g are such that $\Theta(\infty ; f)>11 / 12, \Theta(\infty ; g)>11 / 12$ and $E_{f}(S)=E_{g}(S)$ then $f \equiv g$.

Here Θ is the ramification index which is defined below.
In $[6,7]$ the notion of weighted sharing is introduced which we explain in the following definition.

DEFINITION 1. Let k be a nonnegative integer or infinity. For $a \in C \cup\{\infty\}$, we denote by $E_{k}(a ; f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq k$, and $k+1$ times if $m>k$. If $E_{k}(a ; f)=E_{k}(a ; g)$, we say that f and g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z_{0} is a zero of $f-a$ with multiplicity $m(\leq k)$ if and only if it is a zero of $g-a$ with multiplicity $m(\leq k)$, and z_{0} is a zero of $f-a$ with multiplicity $m(>k)$ if and only if it is a zero of $g-a$ with multiplicity $n(>k)$ where m is not necessarily equal to n.

We say that f, g share (a, k) if f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for all integer p which satisfies $0 \leq p<k$. Also we note that f, g share a value a IM (ignoring multiplicity) or CM (counting multiplicity) if and only if f, g share $(a, 0)$ or (a, ∞) respectively.

DEFINITION 2. For $S \subset \mathbb{C} \cup\{\infty\}$, we define $E_{f}(S, k)$ as $E_{f}(S, k)=\cup_{a \in S} E_{k}(a ; f)$, where k is a nonnegative integer or infinity.

The above definition is in [6]. Clearly $E_{f}(S)=E_{f}(S, \infty)$.
DEFINITION 3. A set S for which two meromorphic functions f, g satisfying $E_{f}(S, k)=E_{g}(S, k)$ becomes identical is called a unique range set of weight k for meromorphic functions.

Unless stated otherwise, throughout the paper f and g are two nonconstant meromorphic functions. We now explain some basic definitions and notations of the value distribution theory (see e.g. [5]). We denote by $n(r, f)$ the number of poles of f in $|z| \leq r$, where a pole is counted according to its multiplicity, and by $\bar{n}(r, f)$ the number of distinct poles of f in $|z| \leq r$. Also we put

$$
N(r, f)=\int_{0}^{r} \frac{n(t, f)-n(0, f)}{t} d t+n(0, f) \log r
$$

and

$$
\bar{N}(r, f)=\int_{0}^{r} \frac{\bar{n}(t, f)-\bar{n}(0, f)}{t} d t+\bar{n}(0, f) \log r
$$

The quantities $N(r, f), \bar{N}(r, f)$ are called respectively the counting function and reduced counting function of poles of f. Let

$$
m(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

where $\log ^{+} x=\log x$ if $x \geq 1$ and $\log ^{+} x=0$ if $0 \leq x<1$. We call $m(r, f)$ the proximity function of f. The sum $T(r, f)=m(r, f)+N(r, f)$ is called the Nevanlinna characteristic function of f. If a is a finite complex number, we put

$$
m(r, a ; f)=m\left(r, \frac{1}{f-a}\right), N(r, a ; f)=N\left(r, \frac{1}{f-a}\right), \bar{N}(r, a ; f)=\bar{N}\left(r, \frac{1}{f-a}\right)
$$

The quantity

$$
\Theta(a ; f)=1-\limsup _{r \longrightarrow \infty} \frac{\bar{N}(r, a ; f)}{T(r, f)}
$$

is called the ramification index, where $a \in \mathbb{C} \cup\{\infty\}$ and $\bar{N}(r, \infty ; f)=\bar{N}(r, f)$. By the second fundamental theorem we know that the set $\{a: a \in \mathbb{C} \cup\{\infty\}, \Theta(a ; f)>0\}$ is countable and $\sum_{a} \Theta(a ; f) \leq 2$. Finally we denote by $N_{2}(r, a ; f)$ the counting function of a-points of f where an a-point of multiplicity m is counted m times if $m \leq 2$ and is counted twice if $m>2$ (see e.g. [1]).

In this paper we prove the following theorem which improves Theorem B and Theorem C.

THEOREM 1. Let $S=\left\{z: z^{7}-z^{6}-1=0\right\}$. If f and g satisfy $\Theta(\infty ; f)+\Theta(\infty ; g)>$ $3 / 2$ and $E_{f}(S, 2)=E_{g}(S, 2)$, then $f \equiv g$.

2 Preparatory Lemmas

In this section we present some lemmas which will be required to prove our main Theorem. The first one is in [9].

LEMMA 1. Let $P(f)=\sum_{j=0}^{n} a_{j} f^{j}$, where $a_{0}, a_{1}, \ldots, a_{n}(\not \equiv 0)$ are such that $T\left(r, a_{j}\right)=S(r, f)$ for $j=0,1, \ldots, n$. Then $T(r, P(f))=n T(r, f)+S(r, f)$.

LEMMA 2. If $\Theta(\infty ; f)+\Theta(\infty ; g)>3 / 2$, then for $n \geq 3, f^{n-1}(f-1) g^{n-1}(g-1) \not \equiv 1$.
PROOF. Assume to the contrary that

$$
\begin{equation*}
f^{n-1}(f-1) g^{n-1}(g-1) \equiv 1 \tag{1}
\end{equation*}
$$

Suppose f does not have any pole. Then from (1) it follows that g has no zero nor 1-point. So by the deficiency relation we get $\Theta(\infty ; g)=0$, which contradicts the given condition. So the lemma is proved in this case. Similarly we can prove the lemma when g does not have any pole. Now we suppose that f and g have poles. From (1), we see that if z_{0} is a zero of f with multiplicity p then z_{0} is a pole of g with multiplicity q such that $p(n-1)=n q$, i.e., $p=q n /(n-1)$. Since n, p, q are all positive integers, it follows that $p \geq n$. Hence $\Theta(0 ; f) \geq 1-1 / n$. Again from (1), we see that if z_{0} is an 1-point of f with multiplicity p then z_{0} is a pole of g with multiplicity q such that $p=n q$ and so $p \geq n$. Hence $\Theta(1 ; f) \geq 1-1 / n$. Similarly we can prove that $\Theta(0 ; g) \geq 1-1 / n$ and $\Theta(1 ; g) \geq 1-1 / n$. So by the deficiency relation we get

$$
\Theta(0 ; f)+\Theta(1 ; f)+\Theta(0 ; g)+\Theta(1 ; g)+\Theta(\infty ; f)+\Theta(\infty ; g) \leq 4
$$

or,

$$
4\left(1-\frac{1}{n}\right)+\frac{3}{2} \leq 4
$$

or $n \leq 8 / 3$, a contradiction. This proves the lemma.
LEMMA 3. If $\Theta(\infty ; f)+\Theta(\infty ; g)>3 / 2$, then for $n \geq 4, f^{n-1}(f-1) \equiv g^{n-1}(g-1)$ implies $f \equiv g$.

PROOF. Let

$$
\begin{equation*}
f^{n-1}(f-1) \equiv g^{n-1}(g-1) . \tag{2}
\end{equation*}
$$

Assume to the contrary that $f \not \equiv g$. Then from (2) we get

$$
\begin{equation*}
f \equiv 1-\frac{y^{n-1}}{1+y+y^{2}+\cdots+y^{n-1}}, \tag{3}
\end{equation*}
$$

where $y=g / f$. If y is constant then $y \neq 1$. Also from (2) we see that $y^{n} \neq 1$ and $y^{n-1} \neq 1$ and so (2) implies

$$
f \equiv \frac{1-y^{n-1}}{1-y^{n}}
$$

which is a contradiction because f is nonconstant. Let y be nonconstant. From (3) we get by the first fundamental theorem and Lemma 1 that

$$
\begin{aligned}
T(r, f) & =T\left(r, \sum_{j=0}^{n-1} \frac{1}{y^{j}}\right)+S(r, y)=(n-1) T\left(r, \frac{1}{y}\right)+S(r, y) \\
& =(n-1) T(r, y)+S(r, y)
\end{aligned}
$$

Now we note that any pole of y is not a pole of $1-y^{n-1} / \sum_{j=1}^{n-1} y^{j}$. So from (3) it follows that

$$
\sum_{k=1}^{n-1} \bar{N}\left(r, u_{k} ; y\right) \leq \bar{N}(r, \infty ; f),
$$

where $u_{k}=\exp (2 k \pi i / n)$ for $k=1,2, \ldots, n-1$. By the second fundamental theorem we get

$$
\begin{align*}
(n-3) T(r, y) & \leq \sum_{k=1}^{n-1} \bar{N}\left(r, u_{k} ; y\right)+S(r, y) \\
& \leq \bar{N}(r, \infty ; f)+S(r, y) \\
& <(1-\Theta(\infty ; f)+\varepsilon) T(r, f)+S(r, y) \\
& =(n-1)(1-\Theta(\infty ; f)+\varepsilon) T(r, y)+S(r, y) \tag{4}
\end{align*}
$$

where $\varepsilon>0$.
Again putting $y_{1}=1 / y$, noting that $T(r, y)=T\left(r, y_{1}\right)+O(1)$ and proceeding as above we get

$$
\begin{equation*}
(n-3) T(r, y) \leq(n-1)(1-\Theta(\infty ; g)+\varepsilon) T(r, y)+S(r, y) \tag{5}
\end{equation*}
$$

where $\varepsilon>0$. From (4) and (5) we get in view of the given condition,

$$
\begin{aligned}
& 2(n-3) T(r, y) \\
\leq & (n-1)(2-\Theta(\infty ; f)-\Theta(\infty ; g)+2 \varepsilon) T(r, y)+S(r, y) \\
< & (n-1)\left(\frac{1}{2}+2 \varepsilon\right) T(r, y)+S(r, y),
\end{aligned}
$$

which implies a contradiction for all sufficiently small positive ε due to the assumption that $n \geq 4$. Hence $f \equiv g$.This completes the proof.

LEMMA 4. If f, g share $(1,2)$, then one of the following holds: (i) $T(r) \leq$ $N_{2}(r, 0 ; f)+N_{2}(r, 0 ; g)+N_{2}(r, \infty ; f)+N_{2}(r, \infty ; g)+S(r, f)+S(r, g)$, where $T(r)=$ $\max \{T(r, f), T(r, g)\}$, (ii) $f g \equiv 1$, or, (iii) $f \equiv g$.

The proof can be found in [7].

3 Proof of Theorem

Let $F=f^{6}(f-1)$ and $G=g^{6}(g-1)$. Since $E_{f}(S, 2)=E_{f}(S, 2)$, it follows that F, G share $(1,2)$. Also by Lemma 1 , we see that $T(r, F)=7 T(r, f)+S(r, f)$ and $T(r, G)=7 T(r, g)+S(r, g)$. Now

$$
\begin{align*}
& N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+N_{2}(r, \infty ; G)+N_{2}(r, \infty ; G)+S(r, F)+S(r, G) \\
\leq \quad & 2 \bar{N}(r, 0 ; f)+N_{2}(r, 0 ; f-1)+2 \bar{N}(r, 0 ; g) \\
& +N_{2}(r, 0 ; g-1)+2 \bar{N}(r, \infty ; f)+2 \bar{N}(r, \infty ; g)+S(r, f)+S(r, g) \\
\leq & \{6+2(2-\Theta(\infty ; f)-\Theta(\infty ; g)+\varepsilon)\} T(r)+S(r, f)+S(r, g) \\
= & (10-2 \Theta(\infty ; f)-2 \Theta(\infty ; g)+2 \varepsilon) T(r)+S(r, f)+S(r, g) \tag{6}
\end{align*}
$$

where $\varepsilon>0$. Also we see that

$$
\begin{equation*}
\max \{T(r, F), T(r, G)\}=7 T(r)+S(r, f)+S(r, g) \tag{7}
\end{equation*}
$$

From (6) and (7), we see that

$$
\begin{aligned}
& \max \{T(r, F), T(r, G)\} \\
\leq \quad & N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)+S(r, F)+S(r, G)
\end{aligned}
$$

if

$$
7 T(r) \leq(10-2 \Theta(\infty ; f)-2 \Theta(\infty ; g)+2 \varepsilon) T(r)+S(r, f)+S(r, g)
$$

i.e., if

$$
(2 \Theta(\infty ; f)+2 \Theta(\infty ; g)-3-2 \varepsilon) T(r) \leq S(r, f)+S(r, g)
$$

Then a contradiction is reached for sufficiently small positive ε because $\Theta(\infty ; f)+$ $\Theta(\infty ; g)>3 / 2$. By Lemma 2, we see that $F G \not \equiv 1$ because $\Theta(\infty ; f)+\Theta(\infty ; g)>3 / 2$. Hence applying Lemma 4 , we see that $F \equiv G$ and so by Lemma 3 , we get $f \equiv g$. This completes the proof.

References

[1] C. T. Chuang, Une généralisation d'une inégalité de Nevanlinna, Scientia Sinica 13(1964), 887-895.
[2] M. Fang and X. Hua, Meromorphic functions that share one finite set CM, Nanjing Daxue Xuebao Shuxue Bannian Kan $15(1)(1998)$, 15-22.
[3] F. Gross, Factorization of meromorphic functions and some open problems, Complex Analysis (Proc. Conf. Univ. Kentucky, Lexington, Ky, 1976), pp. 51-69, Lecture notes in Math. Vol. 599, Springer-Berlin, 1977.
[4] F. Gross and C. C. Yang, On preimage range sets of meromorphic functions, Proc. Japan Acad., 58(1982), 17-20.
[5] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford 1964.
[6] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161(2001), 193-206.
[7] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Variables, to appear.
[8] P. Li and C. C. Yang, Some further results on the unique range sets of meromorphic functions, Kodai Math. J., 13(1995), 437-450.
[9] C. C. Yang, On deficiencies of differential polynomials II, Math. Z., 125(1972), 107-112.
[10] H. X. Yi, On a problem of Gross, Sci. China Ser. A, 24(1994), 1134-1144.
[11] H. X. Yi, A question of Gross and the uniqueness of entire functions, Nagoya Math. J., 138(1995), 169-177.

[^0]: *Mathematics Subject Classifications: 30D35, 30D30.
 ${ }^{\dagger}$ Department of Mathematics, University of Kalyani, West Bengal 741235, India.

