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Abstract

Infinitesimal isometric variations of submanifolds of a semi-Riemannian man-
ifold are considered. We define variation vector fields of submanifolds and study
their properties. It is shown that an isometric variation of a submanifold of the
semi-Euclidean space is trivial if, and only if, there exist a matrix a and a vector
b such that for each x ∈M, Zx = af(x) + b where at = −εaε.

1 Introduction

Let M and M be semi-Riemannian manifolds and g and g the metric tensors on M
and M respectively. Suppose M is isometrically immersed in M by the immersion
f :M → M with the understanding that f(M) is identified with M. In this paper all
manifolds are assumed to be C∞.
Many authors have studied the infinitesimal rigidity of Riemannian submanifolds.

Variation vector field is the main tool of this subject. Our objective is to investigate
the variation vector field of semi-Riemannian submanifolds.
For the smooth map F : I×M →M, where I = (−ε, ε), suppose that the subman-

ifolds Fs(M) are the semi-Riemannian submanifolds of M for all s ∈ I. For the rest of
this section we will assume that the induced metrics on Fs(M) is non-degenerate for
all s ∈ I.
An isometric variation is a smooth map F such that Fs(x) = F (s, x) is an isometric

immersion for each s ∈ I and F (0, x) = f(x).
Let

gs = (Fs)
∗g. (1)

Then gs is a metric tensor on M. Let T2(Tp(M)) denote the tensor algebra of (0, 2)-
tensor fields on Tp(M). If we consider the following function for all p ∈M,

gp : I → T2(Tp(M))
s → (gs)p
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then, (gp, I) is a curve on T2(Tp(M)).

DEFINITION 1. The smooth map F is called an infinitesimal isometric variation
of M if g3(0) = 0.
EXAMPLE 1. Consider the Minkowski space R31. The metric tensor g on this space

is given by the following equality:

gp(v, w) = −v1w1 + v2w2 + v3w3 (2)

for every v, w ∈ Tp(R31). Now suppose

M = {(p1, p2) | |p1| < 1, 0 < −p21 + p22 < 1} (3)

and
F : I ×M → R31, F = (u, v, t(1 + u

2 − v2)),
where I = (−1/2, 1/2), {u, v} is the Euclidean coordinate system of R21 and Tp(M) =
Sp{ ∂

∂u

��
p
, ∂
∂v

��
p
}. Then F0 = f and rankJ(Fs) = 2. The tensor field gs on M defined

by (1) is obtained as

(gs)p(Xp, Yp)

= kXp, Ypl+ 4s2[p21a1(p)b1(p)− p1p2a1(p)b2(p)
−p2p1a2(p)b1(p) + p22a2(p)b2(p)], (4)

where Xp = a1(p)
∂
∂u

��
p
+ a2(p)

∂
∂v

��
p
and Yp = b1(p)

∂
∂u

��
p
+ b2(p)

∂
∂v

��
p
for all Xp, Yp ∈

Tp(M). Since,

(gs)p = (−1 + 4s2p21,−4s2p1p2,−4s2p1p2, 1 + 4s2p22),

we have g3(0) = 0.
The tensor field g0 on the manifold M assigns a scalar product to each point of

M and the index of g0 is the same for all p. Therefore f(M) is a semi-Riemannian
submanifold of R31. The submanifold Fs(M) is the semi-Riemannian submanifold of
the space R31 for every s ∈ I if the index of gs is the same for all p and the following
condition holds,

∀Yp ∈ Tp(M), (gs)p(Xp, Yp) = 0⇒ Xp = 0.

In (4), if we take Yp = (1, 0) and Yp = (0, 1) then the following system of equations are
obtained:

(−1 + 4s2p21)a1(p)− 4s2p1p2a2(p) = 0
(−4s2p1p2)a1(p) + (1 + 4s2p22)a2(p) = 0 (5)

Let 7 denote the determinant of system (5), then

7 = 0⇐⇒ p21 − p22 =
1

4s2
.

Since 7 9= 0 for each p of M, there is no non-vanishing solution of the system (5).
Therefore Xp = 0. Hence (gs)p is nondegenerate.
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By setting v1 = (1, 0), v2 = ((4s2p1p2)/(−1 + 4s2p21), 1) and e1 = v1/ |v1| , e2 =
v2/ |v2| , we have

(gs)p(e1, e1) = −1, (6)

(gs)p(e2, e2) = 1. (7)

By (6) and (7), the index of the metric tensor gs is 1 at each point p. It can easily
be seen that the metric tensor gs is symmetric and bilinear. Thus the manifolds Fs(M)
for s ∈ (−1/2, 1/2) are the semi-Riemannian submanifolds of the space R31. Therefore
F is an infinitesimal isometric variation of M.

2 Preparatory Results

Now, we consider an isometric immersion f :M →M as before. Let Zx be the tangent
vector of the curve α : I →M, α(s) = F (s, x) at α(0), for each x ∈M, Zx is the initial
velocity of the orbit of f(x) under F. The section Z is called the variation vector field
of the variation of F .

LEMMA 1. Let M and M be semi-Riemannian manifolds and F be an isometric
variation of M in M. Let hf :M → Rnν be an isometric immersion. Suppose that

hF = hf ◦ F.
Then hF is an infinitesimal isometric variation if, and only if, F is an infinitesimal
isometric variation.

PROOF. The variation hF gives the mapping hFs :M → Rnν , hFs(x) = hF (s, x) for all
s ∈ I and x ∈M. Let the metric tensors g, g, hg be the metric tensors on the manifolds
M, M and R3ν respectively. Let us suppose

hgs = ( hFs)∗hg,
then

(gp)
3(0)(Xp, Yp) = 0

⇔ limh→0 1h{(hgp)(h)− (hgp)(0)}(Xp, Yp) = 0⇔ limh→0 1h{(hgh)p − (hg0)p}(Xp, Yp) = 0
⇔ limh→0 1h{[( hFh)∗hg]p − [( hF0)∗hg]p}(Xp, Yp) = 0
⇔ limh→0 1h{hg( hf∗((Fh)∗Xp), hf∗((Fh)∗Yp))− hg( hf∗((F0)∗Xp), hf∗((F0)∗Yp))} = 0⇔ limh→0 1h{g((Fh)∗Xp), (Fh)∗Yp)− g(f∗Xp, f∗Yp)} = 0⇔ limh→0 1h{(gh)p)− (g0)p}(Xp, Yp) = 0⇔ limh→0 1h{gp(h)− gp(0)}(Xp, Yp) = 0⇔ g3p(0)(Xp, Yp) = 0
⇔ [g3(0)]p(Xp, Yp) = 0

for all Xp, Yp ∈ Tp(M). This completes the proof.
Now we state the following lemma for the immersed semi-Riemannian submanifold.
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LEMMA 2. The variation F is an infinitesimal isometric variation if, and only if,

kDXZ,Xl = 0, for all X ∈ χ(M). (8)

Here D is the induced connection and k, l is the fibre metric on the tangent bundle
T (M).

Indeed, it can easily be shown by using Lemma 1. Moreover, one can be find the
proof for the Riemannian submanifolds in [1] and [2].

3 Trivial Isometric Variations

Let the group of isometries of the space Rnν be I(Rnν ) and let ϕ(I) be a curve in I(Rnν )
such that ϕ(0) = 1. Let us define the mapping µ by the equation

µ(s, x) = ϕ(s)(f(x)). (9)

Then
(µs)∗(X) = (ϕ(s) ◦ f)∗(X) = (ϕ(s))∗(f∗X)

for X ∈ χ(M). We also have gs = g0 since

gs(X,Y ) = [(µs)
∗g](X,Y ) = g((ϕ(s))∗(f∗X), (ϕ(s))∗(f∗Y ))

= g(f∗X, f∗Y ) = [(µ0)∗g](X,Y ) = g0(X,Y )

for all X,Y ∈ χ(M). Thus µ is an isometric variation.

DEFINITION 2. Let M be a semi-Riemannian manifold and F be an isometric
variation of M. If the variation vector field of F coincides with the variation vector
field of the isometric variation µ defined by (9) then F is said to be trivial.

THEOREM 1. A variation of a submanifold of the semi-Euclidean space is trivial
if, and only if, there exits a matrix a and a vector b such that

Zx = af(x) + b, for each x ∈M
where at = −εaε.
PROOF. If ϕ(I) is a curve in the space I(Rnν ), then we have,

ϕ(s)(f(x)) = α(s)f(x) + β(s), (10)

where f(x) ∈ Rnν , α(s) is a semi-orthogonal matrix and β(s) ∈ Rnν . Substituting s = 0
in (10), we obtain

f(x) = α(0)f(x) + β(0). (11)

The points p0, p1, . . . , pn can be chosen so that the vectors −−→p0pi, (1 ≤ i ≤ n) form a
base of the vector space Rnν in the manifold f(M). Then by using (11), we get the
following equalities

[I − α(0)](
−→
0p0) = β(0),

[I − α(0)](
−→
0pi) = β(0), 1 ≤ i ≤ n.
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Therefore,
[I − α(0)](−−→p0pi) = 0. (12)

By (12), we have I = α(0) and β(0) = 0.
Let λ be the variation which is defined by the curve ϕ. Let us denote the variation

vector field of λ by Z1. The orbit of the point f(x) in the variation λ is the curve

s→ α(s)f(x) + β(s).

Thus we have,
(Z1)x = α3(0)f(x) + β3(0).

Since α(s) is a semi-orthogonal matrix,

(α(s))t = ε(α(s))−1ε, (13)

or simply, αt = εα−1ε. We have

(αt)3 = ε(α−1)3ε. (14)

Since α is a semi-orthogonal matrix, |detα| = 1. Thus if we let α−1 = hα, then αhα = I.
Now

αhα = I ⇒ α3hα+ αhα3 = 0⇒ α3(0)hα(0) + α(0)hα3(0) = 0.
Since α(0) = I and αhα = I, then hα(0) = I. From this, it follows that

hα3(0) = −α3(0). (15)

By (14), we find
(α3(0))t = ε(α−1(0))3ε.

Using α−1(0) = hα(0) and considering the equality (15) one can obtain
(α3(0))t = −ε(α3(0))ε.

Let us denote a = α3(0) and b = β(0) then

(Z1)x = af(x) + b.

Consider the variation F of M in Rnν . If F is trivial then the variation vector field of
F coincides with the variation vector field of λ. Therefore the variation field of F is in
the form

Zx = af(x) + b.

Conversely, suppose that the variation vector field of F is in the form

Zx = af(x) + b

such that a is a matrix satisfying the equality at = −εaε. i.e., a is an element of the
Lie algebra on Oν(n). The matrix a is in Oν(n) if, and only if, exp(sa) is in Oν(n) such
that |s| is sufficiently small [3]. In this case the deformation F takes the form

F (s, x) = exp(sa)f(x) + sb.
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Let us take ϕ(s) = exp(sa). Then ϕ(0) = I, and ϕ(s) is an isometry for all s. The proof
is complete.
Now we present the following example for illustrating the previous theorem.

EXAMPLE 2. Let M be a unit disc in R21 and f : M → R31 be an immersion.
Consider the following isometric variation of M.

µ : I ×M → R31, µ(s, x) = ϕ(s)f(x),

where ϕ(s) is an isometry which is determined by the equality [ϕ(s)]u = α(s)u. If we
take α(s) ∈ O1(3) to be

α(s) =

 cosh s 0 sinh s
0 1 0

sinh s 0 cosh s

 .
Then,

[ϕ(s)]u = (u1 cosh s+ u3 sinh s, u2, u1 sinh s+ u3 cosh s).

Let us denote the variation vector field of µ by Z1. It is easily seen that Z1 = (0, 0, u).
Now we consider the variation F of M given by

F : I ×M → R31, F = (u, v, tu), I = (−
1

2
,
1

2
).

Then F is an infinitesimal isometric variation of M. Let Z be a variation vector field
of F. Then Z = (0, 0, u). Since Z1 and Z coincides, F is a trivial deformation.
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