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Abstract

In this paper, we provide some properties of inverse semigroups from those of
their L-classes.

1 Introduction

Let S be a semigroup and e be an idempotent element in S. Then a H-class He is a
subgroup of S. If there exists a morphism µ from S to He, then we can make N 0£ S£ N 0

into a semigroup (here and in the sequel, N stands for the set of positive integers
and N 0 the set of nonnegative integers). This is called the Bruck-Reilly extension
of S determined by µ. If S is a group and µ is an endomorphism of S, then the
Bruck-Reilly extension is a bisimple inverse !-semigroup. In this case, the H-classes
are important in the study of semigroups. Furthermore, let S be a complete regular
semigroup, then every H-class is a group, and it is known that the Cli®ord semigroup
is a semilattice [1]. On the other hand, for L-classes and R-classes of an inverse
semigroup, fundamental properties were given by several authors [5,6,7]. In this paper,
we consider the properties of inverse semigroups which are related to the structure of
their L-classes. If every L-class of an inverse semigroup S is a semigroup, then we will
show S is a Cli®ord semigroup. We give a characterization of inverse semigroups whose
L-classes contain a semigroup. We shall also show that if every L-class of an inverse
semigroup S is not a semigroup, then S has a chain of idempotent elements which is
not well ordered.

2 Preliminaries

Let S be a semigroup. Then an equivalence L on S is de¯ned by the rule that aLb
if, and only if, S1a = S1b, where S1 = Sa [ fag. Similarly we de¯ne the equivalence
R by the rule that aRb if, and only if, aS1 = bS1. It is well known that L is a right
congruence and R is a left congruence. The intersection of L and R is denoted by
H and the join of L and R is denoted by D. The L-class (resp. R-class, H-class,
D-class) containing the element a will be denoted by La (resp. Ra ; Ha; Da). If e is
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112 Inverse Semigroups

an idempotent element of S, then He is a subgroup of S; and no H-class can contain
more than one idempotent.

A semigroup S is called an I-semigroup if a unary operation a 7! a¡ 1 is de¯ned on
S such that, for all a; b 2 S,

(a¡ 1)¡ 1 = a; aa¡ 1a = a:

Completely regular semigroup is speci¯ed within an I-semigroup by

aa¡ 1 = a¡ 1a;

and that a Cli®ord semigroup is specī ed by the properties

aa¡ 1 = a¡ 1a; aa¡ 1bb¡ 1 = bb¡ 1aa¡ 1:

An inverse semigroup is an I-semigroup S such that for all a; b 2 S,

aa¡ 1bb¡ 1 = bb¡ 1aa¡ 1:

PROPOSITION 2.1. The following statements are equivalent.

(1) S is an inverse semigroup.
(2) S is regular, that is for any element a in S, there exists x in S such that axa = a

and its idempotents commute.
(3) Every L-class and every R-class contains exactly one idempotent.
(4) Every element of S has a unique inverse.

PROPOSITION 2.2. Let S be an inverse semigroup with semilattice E of idempo-
tents. Then the following hold.

(1) (ab)¡ 1 = b¡ 1a¡ 1 for every a; b in S.
(2) Both aea¡ 1 and a¡ 1ea are idempotent for every a in S and e in E.
(3) aLb if, and only if, a¡ 1a = b¡ 1b; aRb if, and only if, aa¡ 1 = bb¡ 1.
(4) For e; f 2 E, eDf if, and only if, there exists a in S such that aa¡ 1 = e and

a¡ 1a = f .

The proofs of these two results can be found in [2, Theorem 5.1.1] and [2, Proposition
5.1.2] respectively.

3 Inverse semigroups

In this section, we assume that S is an inverse semigroup. If every L-class, or, every
R-class in S is a semigroup, then we have the following.

THEOREM 3.1. If every L-class, or, every R-class in S is a semigroup, then S is
a Cli®ord semigroup.

PROOF. Suppose that (a; b) 2 L. Then by Proposition 2.2(3), a¡ 1a = b¡ 1b: Since
every L-class is a semigroup, we have aLba. Hence

a¡ 1a = (ba)¡ 1ba = a¡ 1(b¡ 1b)a = a¡ 1(a¡ 1a)a = a¡ 2a2:
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Also for each a in S, aa¡ 1 and a¡ 1a are idempotent. Since idempotents commute, so
we obtain

aa¡ 1 = aa¡ 1aa¡ 1 = aa¡ 2a2a¡ 1 =
¡
aa¡ 1

¢¡
a¡ 1a

¢¡
aa¡ 1

¢

=
¡
a¡ 1a

¢ ¡
aa¡ 1

¢¡
aa¡ 1

¢¡
a¡ 1a

¢
= a¡ 1a2a¡ 2a = a¡ 1aa¡ 1a = a¡ 1a:

Thus S is a Cli®ord semigroup. A similar argument can be applied to the case where
each R-class in S is a semigroup. The proof is complete.

Next if there is a L-class La in S such that La is a semigroup, then we have the
following characterization.

THEOREM 3.2. Let a be an element of S. Then the following conditions are
equivalent.

(1) La is a semigroup.
(2) For every element b in La , b¡ 1b = b¡ 2b2.
(3) For every element c in Ra¡ 1 , cc¡ 1 = c2c¡ 2.
(4) Ra¡ 1 is a semigroup.

PROOF. To see that (1) implies (2), let b be an element in La. Then a¡ 1a = b¡ 1b.
Since La is a semigroup, bLab, thus

b¡ 1b = (ab)¡ 1ab = b¡ 1(a¡ 1a)b = b¡ 1(b¡ 1b)b = b¡ 2b2:

(2) ) (3): Let c be an element in Ra¡ 1 . Then since a¡ 1 2 Ra¡ 1 ,

a¡ 1a = a¡ 1
¡
a¡ 1

¢¡ 1
= cc¡ 1 =

¡
c¡ 1

¢¡ 1
c¡ 1:

It follows that aLc¡ 1, so c¡ 1 2 La. By (2), this shows that

cc¡ 1 =
¡
c¡ 1

¢¡ 1
c¡ 1 =

¡
c¡ 1

¢¡ 2 ¡
c¡ 1

¢2
= c2c¡ 2:

(3) ) (4): Let g; h 2 Ra¡ 1 . Then gRh. Since R is a left congruence, it follows that
g2Rgh and by our assumption, gRg2 and hence that gRgh: Thus gh 2 Rg = Ra¡ 1 .

(4) ) (1): Let x; y 2 La , then x¡ 1x = a¡ 1a = y¡ 1y. Hence

x¡ 1(x¡ 1)¡ 1 = a¡ 1(a¡ 1)¡ 1 = y¡ 1(y¡ 1)¡ 1:

This shows that x¡ 1; y¡ 1 2 Ra¡ 1 . Since Ra¡ 1 is a semigroup, we see that y¡ 1x¡ 1 =
(xy)¡ 1 2 Ra¡ 1 . Thus

(xy)¡ 1xy = (xy)¡ 1((xy)¡ 1)¡ 1 = a¡ 1(a¡ 1)¡ 1 = a¡ 1a

It follows that xy 2 La, so La is a semigroup.

THEOREM 3.3. Suppose that a is an element in S such that La is a semigroup.
Then the following hold.

(1) a¡ 1a is the largest idempotent in the D-class Da . This shows that each D-class
contains at most one L-class which is semigroup.

(2) For any element b 2 La, each bnb¡ n (n 2 N ) is idempotent and

bb¡ 1 ¸ b2b¡ 2 ¸ ::: ¸ bnb¡ n ¸ :::
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PROOF. To see that (1) holds, let f be an idempotent in Da. Then there exists an
element b in S such that b¡ 1b = a¡ 1a and bb¡ 1 = f. This shows that b is contained in
La, so by Theorem 3.2(2), b¡ 1b = b¡ 2b2. Since idempotents commute,

f = bb¡ 1 = bb¡ 1bb¡ 1 = bb¡ 2b¡ 2b¡ 1 = f
¡
b¡ 1b

¢
f =

¡
b¡ 1b

¢
f =

¡
a¡ 1a

¢
f:

This implies that a¡ 1a ¸ f . Therefore a¡ 1a is the largest idempotent in Da . Next we
assume that there exists L-class Lb in the D-class Da which is a semigroup. Then a¡ 1a
and b¡ 1b are the largest idempotent elements in Da , hence a¡ 1a = b¡ 1b and La = Lb.

To see that (2) holds, suppose that b 2 La. Then bnb¡ n; n 2 N; are idempotent
elements and by Theorem 3.2(2),

a¡ 1a = b¡ 1b = b¡ 2b2 = ::: = b¡ nbn:

It follows that b¡ 1b = a¡ 1a ¸ bb¡ 1 by (1). Therefore we obtain bb¡ 1 =
¡
bb¡ 1

¢¡
b¡ 1b

¢

and
b2b¡ 2 = b

¡
bb¡ 1

¢
b¡ 1 = b

¡
bb¡ 1

¢¡
b¡ 1b

¢
b¡ 1 =

¡
b2b¡ 2

¢¡
bb¡ 1

¢
:

This implies that bb¡ 1 ¸ b2b¡ 2. Next we assume that bkb¡ k ¸ bk+1b¡ (k+1) for k ¸ 1.
Then

bk+2b¡ (k+2) = b
³
bk+1b¡ (k+1)

´
b¡ 1 = b

³
bk+1b¡ (k+1)

´ ¡
bkb¡ k

¢
b¡ 1

= bk+2b¡ 1
¡
b¡ kbk

¢
b¡ (k+1) = bk+2b¡ 1

³
b¡ (k+1)bk+1

´
b¡ (k+1)

=
³
bk+2b¡ (k+2)

´ ³
bk+1b¡ (k+1)

´

This shows that bk+1b¡ (k+1) ¸ bk+2b¡ (k+2), so an inductive argument leads to bb¡ 1 ¸
b2b¡ 2 ¸ ::: ¸ bnb¡ n ¸ ::: : The proof is complete.

COROLLARY 3.4. Let a be an element in a periodic inverse semigroup S and
assume that the L-class La is a semigroup. Then La is group.

PROOF. Since S is periodic, La becomes a periodic semigroup. Let b be an element
in La. Then there exists a positive integer n such that bn is idempotent. It follows that
bn = a¡ 1a since a¡ 1a is the largest idempotent in Da and bn 2 La, hence bnb¡ n = a¡ 1a.
Now Theorem 3.3 (2) shows that

a¡ 1a ¸ bb¡ 1 ¸ b2b¡ 2 ¸ ¢¢¢¸ bnb¡ n :

Therefore we have that b 2 Ha¡ 1a, and so La µ Ha¡ 1a µ La . Thus La = Ha¡ 1a is a
group. The proof is complete.

Corollary 3.4 shows that there is no ¯nite inverse semigroup with a L-class which
is a semigroup but not a group.

EXAMPLE 3.5. Let IX be a symmetric inverse semigroup, that is, the set of all
partial one to one maps of a set X . Let X = f1; 2g. Then the following two L-classes

½ µ
1 2
1 2

¶
;

µ
1 2
2 1

¶ ¾
and f;g
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are groups.

EXAMPLE 3.6. Let

¾ =

µ
0 1 2 ¢¢¢ n ¢¢¢
1 2 3 ¢¢¢ n + 1 ¢¢¢

¶

and let S =
©
¾ ¡ m¾n j m; n 2 N 0

ª
. Then S has a L-class which is a semigroup but

not a group. Note that S is an inverse semigroup and isomorphic to bicyclic semigroup
N 0 £ N 0. Thus L-class L¾ ¾ ¡ 1

»= L(0;0) =
©
(m; 0) 2 N 0 £ N 0 j m 2 N 0

ª
is a semigroup

but not a group.

For any subset T in an inverse semigroup S, we de¯ne R(T ) = fx 2 S j Tx µ Tg.
Clearly R(T) is a semigroup. Let a be an element of S. Then since a¡ 1a is a right
identity in R(La), a¡ 1a 2 R(La)

THEOREM 3.7. The following statements hold.
(1) For any y 2 R(La), y¡ 1y 2 R(La).

(2) a¡ 1a is the smallest idempotent element in R(La).

(3) There is an unique idempotent element in R(La) if, and only if, R(La) µ La.
(4) La is a semigroup if, and only if, La µ R(La).

(5) La is a group if, and only if, Da µ R(La).

PROOF. (1): Let y 2 R(La). Then since Lay µ La, (by)¡ 1(by) = a¡ 1a = b¡ 1b for
any element b 2 La . Hence for any b 2 La ,

¡
by¡ 1y

¢¡ 1
by¡ 1y = y¡ 1yb¡ 1by¡ 1y

= y¡ 1y
¡
y¡ 1b¡ 1by

¢
y¡ 1y = y¡ 1b¡ 1by = b¡ 1b = a¡ 1a:

It follows that Lay¡ 1y µ La. Thus y¡ 1y 2 R(La).
(2): Let f be an idempotent element in R(La). Then since af 2 La, a¡ 1a =

(af)¡ 1af = f
¡
a¡ 1a

¢
. This implies that a¡ 1a · f , so a¡ 1a is the smallest idempotent

element in R(La).

(3): Assume that there is an unique idempotent element in R(La). Then by (2),
a¡ 1a is the unique idempotent in R(La). Let y 2 R(La). Then by (1), y¡ 1y 2 R(La).
Since y¡ 1y is an idempotent element, we have that y¡ 1y = a¡ 1a, so y 2 La. The
converse is clear since La contains the unique idempotent element.

(4): Assume that La is a semigroup. Then LaLa µ La, so La µ R(La). Conversely
since La µ R(La), LaLa µ La, hence La is a semigroup.

(5): Assume that La is a group. Then La = Ra = Da . Thus by (4), Da = La µ
R(La). Conversely since LaLa µ LaDa µ LaR(La) µ La, La become a semigroup.
Further, by Theorem 3.3(1), Da contains an unique idempotent element. This shows
that Da = Ra = La = Ha: Hence La is a group.

COROLLARY 3.8. Let a be an element in the inverse semigroup S. Then the
following statements hold.

(1) There exists an unique idempotent element in R(La) if, and only if, a¡ 1a is a
right identity element of R(La).

(2) La is a semigroup if, and only if, La = R(La) \ Da .
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PROOF. (1): Let y be an element in R(La). Then since R(La) µ La , ya¡ 1a =
yy¡ 1y = y. Thus a¡ 1a is a right identity element of R(La). Conversely let f be an
idempotent element in R(La), then a¡ 1a · f . Further since a¡ 1a is a right identity
element in R(La), fa¡ 1a = f . It follows that f = a¡ 1a.

(2): Let z 2 R(La) \ Da, then a¡ 1a · z¡ 1z and z¡ 1z · a¡ 1a by Theorem 3.3(1)
and Theorem 3.6(2). Hence z¡ 1z = a¡ 1a which implies z 2 La , that is, we have
equality. The converse is clear from Theorem 3.6(4).

Finally, we consider an inverse semigroup S which satis¯es the condition that each
L-class is not a semigroup. We have the following.

THEOREM 3.9. Let S be an inverse semigroup such that each L-class is not a
semigroup. Then there is a chain of idempotents in S which is not well ordered.

PROOF. Let e¸ be an idempotent element in S. Then since Le¸ is not a semigroup,
there is an idempotent e¹ such that Le¸ Le¹ \Le¹ 6= ; and e¸ 6= e¹ . Let c be an element
in Le¸ Le¹ \ Le¹ . Then there exist a; b 2 Le¸ such that c = ab. Since e¸ is a right
identity of Le¸ , it follows that b = be¸ . Hence we have

Se¸ = Sc = (Sa)b = (Se¸)be¸ = (Se¸ be¸ )e¸ = Se¹ e¸ :

This shows that e¸ e¹ is an element in Le¸
, so Proposition 2.1(3) implies that e¹ e¸ = e¹ ,

which means that e¸ > e¹ . We can apply this process repeatedly to obtain a chain
of idempotents in S. We claim that this chain is not well-ordered. Indeed, if there is
a minimal element in the chain, then the L-class which contains the minimal element
must become a semigroup, but this is contrary to our assumption.

EXAMPLE 3.10. Let S be the inverse semigroup generated by the following set

½ µ
` ` + 1 ¢¢¢ ` + n ¢¢¢
` + 1 ` + 2 ¢¢¢ ` + n + 1 ¢¢¢

¶ ¯̄
¯̄ ` 2 Z; n 2 N 0

¾

and its inverse. Then each L-class is

Lm = f¾ 2 S j Im¾ = (m; m + 1; m + 2; ¢¢¢)g :

Clearly Lm is not semigroup.
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