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Abstract

Dichotomy theories for di®erence equations are applied to obtain stability
criteria for a class of discrete reaction-di®usion equations.

Discrete reaction-di®usion type partial di®erence equations have recently been in-
troduced by a number of authors as models for the study of spatiotemporal chaos (see
e.g. [6]). Stability criteria have also been derived for such equations which involves
two-level (see [3]) as well as three-level processes (see e.g. [4]). Discretizations of the
heat equation lead to several well known multi-level partial di®erence schemes. Thus,
besides the question of existence of solutions, stability behaviors of solutions of di®er-
ence schemes are also of fundamental importance, because these behaviors are related
to the question of growth of numerical errors. The stability problem has been treated
by several authors (see e.g. [3-5]). The techniques used to derive stability criteria in
these studies include Gronwall type inequalities, Bihari type inequalities, general solu-
tions, Laplace transforms, comparison theorems, etc. Dichotomy theory has not been
utilized, however. In this paper, we intend to show that dichotomy theory is also useful
in obtaining stability criteria for partial di®erence equations.

To this end, we will look at a reaction-di®usion equation. Let R be the set of reals
and N the set of nonnegative integers. Consider a discrete reaction-di®usion equation
of the form

u
(j+1)
i = aju

(j)
i¡ 1 + bju

(j)
i + cju

(j)
i+1 + g

(j)
i + G(j; u

(j)
i ); (1)

where i = 1; 2; : : : n; j 2 N ; fajg ; fbjg and fcjg are real sequences; g = fg
(j)
i g is a real

function de¯ned for i = 1; 2; : : : ; n and j 2 N , and G is a real function. We will also
assume that side conditions

u
(j)
0 = hj 2 R; j 2 N; (2)

u
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n+1 = qj 2 R; j 2 N; (3)

u
(0)
i = ¿i 2 R; i = 1; 2; : : : ; n; (4)

¤Mathematics Subject Classi¯cations: 39A10
ySupported by Fondecyt under Grant No. 1000023
zDepartmento de Ciencias Exactas, Universidad de Los Lagos, Casilla 933, Osorno, Chile

86



R. Medina 87

are imposed. Let
ª = f(i; j) j i = 0; 1; : : : ; n + 1 ; j 2 Ng:

A solution of (1-4) is a discrete function u = fu(j)
i g(i;j)2ª which satis¯es the functional

relation (1) and also the side conditions (2-4). If we put u(j) = col(u
(j)
1 ; u

(j)
2 ; : : : ; u

(j)
n )

and ¿ = col(¿1; ::; ¿n), then the sequence fu(j)g1
j=0 will satisfy the two-term vector

equation
u(j+1) = A(j) u(j) + fj + F (j; u(j)); j 2 N; (5)

subject to the initial condition
u(0) = ¿; (6)

where

A(j) =

2
6666664

bj cj 0 ::: ::: 0
aj bj cj 0 ::: 0
0 aj bj cj ::: 0
::: ::: ::: ::: ::: :::
::: ::: ::: ::: ::: cj

0 ::: ::: 0 aj bj

3
7777775

; (7)

fj = col
³
g
(j)
1 ; : : : ; g(j)

n

´
+ col (ajhj ; 0; : : : ; 0; cjqj) ;

and
F (j; (x1; :::; xn)) = col(G(j; x1); : : : ; G(j; xn)):

Conversely, if fu(j)g1
j=0 is a solution of (5-6), then by augmenting each u(j) with the

terms u
(j)
0 = hj and u

(j)
n+1 = qj to form fu

(j)
0 ; u

(j)
1 ; : : : ; u

(j)
n ; u

(j)
n+1g; we see that the

resulting family forms a solution of (1-4).
If f ´ 0 and F ´ 0; then equation (5) reduces to

u(j+1) = A(j)u(j); j 2 N (8)

subject to u(0) = ¿: Let © (j; j0) be the fundamental matrix of equation (8) de¯ned by

© (j; j0) = I (where I is the identity matrix) for j · j0; and © (j; j0) =
j¡ 1Q
i=j0

A (i) for

j 2 N .
We recall from [7] that equation (8) is said to have a dichotomy with projection

matrix P if there are positive constants ® and ¸ , and a projection matrix P such that

°°© (j; 0)P© ¡ 1 (l; 0)
°° · ®¸j¡ l; j ¸ l ¸ 0

°°© (j; 0) (I ¡ P )© ¡ 1 (l; 0)
°° · ®¸ l¡ j ; l ¸ j ¸ 0:

If ¸ = 1, then we have an ordinary dichotomy, while if ¸ 2 (0; 1), then we have an
exponential dichotomy. We want to point out that a dichotomy is a type of condi-
tional stability for non-autonomous di®erence equations. Thus, it is connected with
the concepts of uniform stability and uniform asymptotic stability, see Coppel [2].

The following theorems are known.
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THEOREM A ([7]). Suppose equation (8) has an ordinary dichotomy, and for all
(j; u); (j; v) 2 N £ Rn, the inequality

kF (j; u) ¡ F (j; v)k · ¸ (j) ku ¡ vk (9)

holds, where
1P

l=0

kF (l; 0)k < 1 and
1P

l=0

¸ (l) < 1: Then to each bounded solution of

the equation

u (j + 1) = A (j)u (j) + b (j) ; j 2 N; (10)

there corresponds a bounded solution of the equation

w (j + 1) = A (j) w (j) + b (j) + F (j; w (j)) ; j 2 N; (11)

and conversely, to each bounded solution of (11), there corresponds a bounded solution
of (10). Moreover, the di®erence between the corresponding solutions of equation (10)
and equation (11) tends to zero as j ! 1; provided that © (j; 0)P ! 0 as j ! 1:

THEOREM B ([8]). Suppose (i) equation (8) has an exponential dichotomy, (ii)

F (j; ¢) ; j = 0; 1; 2; :::; are continuous functions such that
1P

j=0
supkxk· ± kF (j; x)k <

1 for some ± > 0; and (iii) © (j; 0)P ! 0 as j ! 1: Then, to each bounded solution
u (j) of equation (10) there corresponds a bounded solution v (j) of equation (11) such
that v (j) = u (j) + o (1) as j ! 1:

As immediate consequences, we have the following stability results for our reaction-
di®usion equations.

THEOREM 1. Assume the conditions of Theorem A hold. Then to each bounded
solution of equation (8), there corresponds a bounded solution v(j) of equation (5), and
conversely. Moreover, the di®erence between the corresponding solutions of equation
(8) and equation (5) tends to zero as j ! 1, provided that © (j; 0)P ! 0 as j ! 1:

THEOREM 2. Under the conditions of Theorem B, to each bounded solution u(j)

of equation (8), there corresponds a bounded solution v(j) of equation (5). Moreover,
v(j) = u(j) + o (1) as j ! 1:

As another example, let us ¯rst quote a result in [1].

THEOREM C ([1], Theorem 5.6.8). Suppose there exists a constant c > 1 and a
projection matrix P such that for all j ¸ 0;

j¡ 1X

i=0

°°© (j; 0)P© ¡ 1 (i + 1; 0)
°° +

1X

i=j

°°© (j; 0) (I ¡ P )© ¡ 1 (i + 1; 0)
°° · c: (12)

Further, suppose that for all (j; v) 2 N £ Rn, the function F (j; v) satis¯es

kF (j; v)k · ® kvk ; ® < c¡ 1: (13)

Then the following hold: i) If v(j) is a bounded solution of equation
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v(j+1) = A (j) v(j) + F
³
j; v(j)

´
; j 2 N (14)

such that
°°v(j)

°° · ¯ for all j ¸ 0: Then v(j) ! 0 as j ! 1: ii) There exists a constant

° > 0 independent of F , such that the solution v(j) determined by v(0) = ¿ of equation
(5) satis¯es °°°v(j)

°°° · (1 ¡ ® c)
¡ 1

° kP¿k ; j 2 N:

As a direct consequence, we have the following result.

THEOREM 3. Assume that f ´ 0 in equation (5). Then, under the hypotheses
of Theorem 3, there exists a constant ° > 0 independent of F , such that the solution
v(j); determined by v(0) = ¿; of equation (5) satis¯es

°°°v(j)
°°° · (1 ¡ ® c)¡ 1 ° kP¿k ; j 2 N:

Further, these solutions of equation (5) converge to zero as j ! 1:

Now, we will apply our previous results to equation (8) in the case where aj ´
a; bj ´ b and cj ´ c; and ac 6= 0: Then the matrices A(j) de¯ned by (7) are all equal
to a constant matrix A: Furthermore, the eigenvalues of A are given by ¸k (A) = b +
2¾

p
ac cos (k¼=(n + 1)) ; k = 1; 2; :::; n; where ¾ is the sign of a; and the corresponding

eigenvectors are given by

col

µ
sin

k¼

n + 1
;
³ c

a

´¡ 1=2

sin
2k¼

n + 1
; :::;

³ c

a

´¡ (n¡ 1)=2

sin
nk¼

n + 1

¶
; k = 1; :::; n:

In view of the eigenvalues, the spectral radius ½ (A) of A is equal to jbj+2
p

ac cos(¼=(n+
1)) when ac > 0; and ½ (A) =

p
b2 ¡ 4ac cos2(¼=(n + 1)) when ac < 0 (see [3]). Hence,

in view of the inequality 2
p

ac · jaj + jcj , it follows that ½ (A) · jaj + jbj + jcj : As a
consequence, © (j; 0) = Aj ! 0 as j ! 1; when jaj + jbj + jcj < 1:

COROLLARY 1. Assume that (i) A (j) = A is a constant matrix with diagonal
elements a; superdiagonal elements c and subdiagonal elements a such that ac 6= 0
and jaj + jbj + jcj < 1; and (ii) for all (j; u); (j; v) 2 N £ Rn, kF (j; u) ¡ F (j; v)k ·
¸ (j) ku ¡ vk, where

1P
l=0

kF (l; 0)k < 1 and
1P

l=0

¸ (l) < 1: Then, to each bounded

solution u(j) of (8), there corresponds a bounded solution v(j) of equation (5), and
conversely. Furthermore, v(j) = u(j) + o (1) as j ! 1:

THEOREM 4. Assume that (i) A (j) = A is a constant matrix with diagonal
elements a; superdiagonal elements c and subdiagonal elements a such that ac 6= 0: If
(ii) and (iii) of Theorem B hold and r of the eigenvalues of A are of modulus less than
1, and n ¡ r of its eigenvalues are of modulus greater than 1, then to each bounded
solution u(j) of equation (8) there corresponds a bounded solution v(j) of equation (5),
such that v(j) = u(j) + o (1) as j ! 1:

Indeed, the conditions imposed on A imply that equation (8) has an exponential
dichotomy with projection matrix P; which has rank r: Thus there is a r-dimensional
subspace of solutions of equation (8) tending to zero uniformly and exponentially as
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j ! 1 [1, Section 5.8]. To each solution of equation (8) belonging to this subspace,
there then corresponds a bounded solution of equation (5).

It is well known that a linear system of di®erence equations with constant coe± cient
matrix has an exponential dichotomy if, and only if, none of the eigenvalues of its
coe± cient matrix is of modulus equal to 1: In the case of nonconstant coe± cient matrix
this result is not valid (see [9]). However, we have the following result when fA(j)g is
uniformly bounded.

THEOREM 5. Assume that (I) kA (j)k · M for all j 2 N; (II) A (j) has l
eigenvalues of modulus less than 1¡ "1 = ¯1, and n¡ l eigenvalues of modulus 1+"1 =
¯2; "1 > 0, for each j 2 N; (III) There exists su± ciently small positive ± = ± ("1; M),
such that for su± ciently large T 2 N; supj¸ T kA (j + 1) ¡ A (j)k < ±; and (IV) The

conditions (ii) and (iii) of Theorem B hold. Then, to each bounded solution u(j)

of equation (8) there corresponds a bounded solution v(j) of equation (5), such that
v(j) = u(j) + o (1) as j ! 1; provided that © (j; 0)P ! 0 as j ! 1:

Indeed, conditions (I), (II) and (III) imply that equation (8) has an exponential
dichotomy (see [9]). Thus, by (IV) and Theorem B, our result follows.

Although there are other direct consequences of dichotomy theories, we believe the
previous examples are su± cient to illustrate how they can be obtained.
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