On Upper and Lower D-Continuous Multifunctions *

Metin Akdağ[†]

Received 12 May 2001

Abstract

In this paper, we define upper and lower *D*-continuous multifunctions and obtain some of their characterizations and basic properties. Also some relationships between *D*-continuity and other types of continuity are given.

In 1968, Singal and Singal [9] introduced and investigated the concept of almost continuous functions. In 1981, Heldermann [2] introduced some new regularity axioms and studied the class of D-regular spaces. In 1990, Kohli [3] introduced the concept of D-continuous functions and some properties of D-continuous functions are given by him. The purpose of this paper is to extend this concept and to provide some properties of multifunctions.

A multifunction $F : X \hookrightarrow Y$ is a correspondence from X to 2^Y with F(x) a nonempty subset of Y, for each $x \in X$. Let A be a subset of a topological space (X, τ) . A° and \overline{A} denote the interior and closure of A respectively. A subset A of X is called regular open (regular closed) [12] if, and only if, $A = (\overline{A})^{\circ}$ (respectively $A = (A^{\circ})$). A space (X,τ) is said to be almost regular [8] if for every regular closed set F and each point x not belonging to F, there exist disjoint open sets U and V containing F and x respectively. For a given topological space (X, τ) , the collection of all sets of the form $U^+ = \{T \subseteq X : T \subseteq U\} (U^- = \{T \subseteq X : T \cap U \neq \emptyset\})$ with U in τ , forms a basis (respectively subbasis) for a topology on 2^X (see [5]). This topology is called upper (respectively lower) Vietoris topology and denoted by τ_V^+ (respectively τ_V^-). We will denote such a multifunction by $F: X \hookrightarrow Y$. For a multifunction F, the upper and lower inverse set of a set B of Y will be denoted by $F^+(B)$ and $F^-(B)$ respectively, that is, $F^+(B) = \{x \in X : F(x) \subseteq B\}$ and $F^-(B) = \{x \in X : F(x) \cap B \neq \emptyset\}$. The graph G(F) of the multifunction $F: X \hookrightarrow Y$ is strongly closed [4] if for each $(x, y) \notin G(F)$, there exist open sets U and V containing x and containing y respectively such that $(U \times V) \cap G(F) = \emptyset.$

In [7], a multifunction $F: X \hookrightarrow Y$ is said to be (i) upper semi continuous (or u.s.c.) at a point $x \in X$ if for each open set V in Y with $F(x) \subseteq V$, there exists an open set U containing x such that $F(U) \subseteq V$; and (ii) lower semi continuous (or l.s.c.) at a point $x \in X$ if for each open set V in Y with $F(x) \cap V \neq \emptyset$, there exists an open set Ucontaining x such that $F(z) \cap V \neq \emptyset$ for every $z \in U$.

In [10], a multifunction $F: X \hookrightarrow Y$ is said to be (i) upper weakly continuous (or u.w.c.) at a point $x \in X$ if for each open set V in Y with $F(x) \subseteq V$, there exists an

^{*}Mathematics Subject Classifications: 54C10, 54C60

 $^{^{\}dagger}\textsc{Department}$ of Mathematics, Cumhuriyet University, Sivas 58140, Turkey

open set U containing x such that $F(U) \subseteq \overline{V}$; and (ii) lower weakly continuous (or l.w.c.) at a point $x \in X$ if for each open set V in Y with $F(x) \cap V \neq \emptyset$, there exists an open set U containing x such that $F(z) \cap \overline{V} \neq \emptyset$ for every $z \in U$.

Let $F: X \hookrightarrow Y$ be a multi function. F is said to be upper D-continuous (briefly u.D.c.) at $x_0 \in X$, if for each open F_{σ} -set V with $F(x_0) \subset V$, there exists an open neighborhood U_{x_0} of x_0 such that the implication $x \in U_{x_0} \Rightarrow F(x) \subset V$ holds. F is said to be lower D-continuous (briefly l.D.c.) at $x_0 \in X$, if for each open F_{σ} -set V with $F(x_0) \cap V \neq \emptyset$ there exists an open neighborhood U_{x_0} of x_0 such that the implication $x \in U_{x_0} \Rightarrow F(x_0) \cap V \neq \emptyset$ holds. F is said to be D-continuous (briefly D.c.) at $x_0 \in X$, if it is both u.D.c. and l.D.c. at $x_0 \in X$. Finally, F is said to be u.D.c. (l.D.c. or D.c.) on X, if it has this property at each point $x \in X$.

THEOREM 1. Let X and Y be topological spaces. For a multifunction $F: X \hookrightarrow Y$, the following statements are equivalent: (a) F is u.D.c. (l.D.c.). (b) For every open F_{σ} -set V, $F^+(V)$ ($F^-(V)$) is an open set in X. (c) For every closed G_{δ} -set K, $F^-(K)$ ($F^+(K)$) is closed in X. (d) For each $x \in X$ and each net $\{x_{\alpha}\}_{\alpha \in \Delta}$ which converges to x, if V is an open F_{σ} -set with $F(x) \subset V$ ($F(x) \cap V \neq \emptyset$), then there is an $\alpha_o \in \Delta$ such that for every $\alpha \geq \alpha_o$, $F(x_{\alpha}) \subset V$ (respectively $F(x_{\alpha}) \cap V \neq \emptyset$).

PROOF. (a) \Rightarrow (b): If V is an open F_{σ} -set of Y, then for each $x \in F^+(V)$, $F(x) \subset V$ and hence there is an open neighborhood U of x such that $\bigcup_{x \in U} F(x) \subset V$. Thus $F^+(V)$, being a neighborhood of each of its points, is open.

(b) \Rightarrow (c): Let K be a closed G_{δ} -set of Y. Then $Y \setminus K$ is an open F_{σ} -set and $F^+(Y \setminus K) = X \setminus F^-(K)$ is open. Thus $F^-(K)$ is closed in X.

(c) \Rightarrow (b): Let V be an open F_{σ} -set. Then $Y \setminus V$ is a closed G_{δ} -set and $F^{-}(Y \setminus V) = X \setminus F^{+}(V)$ is closed in X. Thus $F^{+}(V)$ is an open set in X.

(b) \Rightarrow (a): Let $x \in X$ and let V be an open F_{σ} -set containing F(x). Then $F^+(V)$ is an open set containing x and $F(F^+(V)) \subset V$. Thus F is u.D.c. at x.

(b) \Rightarrow (d): Let $\{x_{\alpha}\}_{\alpha \in \Delta}$ be a net in X which converges to x and let V be an open F_{σ} -set containing F(x). Then $F^+(V)$ is an open set containing x. Since $\{x_{\alpha}\}$ converges to x, there is an $\alpha_o \in \Delta$ such that for every $\alpha \geq \alpha_o, x_{\alpha} \in F^+(V)$. Thus for every $\alpha \geq \alpha_o, F(x_{\alpha}) \subset V$.

(d) \Rightarrow (b): Let V be an open F_{σ} -set of Y. To show that $F^+(V)$ is open, assume to the contrary that there is $x \in F^+(V)$ such that $F^+(V)$ is not neighborhood of x. Then there is a net $\{x_{\alpha}\}$ in X which converges to x and misses $F^+(V)$ frequently. Then $\{F(x_{\alpha})\}$ misses V frequently, which is a contradiction.

The proof for the case where F is 1.D.c. is similarly proved. The proof is complete.

As an example, let $X = \{0, 1\}, \tau = \{\emptyset, X, \{1\}\}$ and $Y = \{a, b, c\}, \vartheta = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$. If we define $F : (X, \tau) \hookrightarrow (Y, \vartheta)$ with $F(0) = \{a\}, F(1) = \{b\}$, then F is u.D.c. (l.D.c.) but not u.s.c. (respectively l.s.c.) at $x_0 = 0$.

THEOREM 2. Let $F : (X, \tau) \hookrightarrow (Y, \vartheta)$ be a multifunction. If F is u.s.c. (l.s.c.), then F is u.D.c. (respectively l.D.c.).

PROOF. Suppose that F is u.s.c. (l.s.c.) at $x_0 \in X$. If V is an open F_{σ} -set in Y with $F(x_0) \subset V$ (respectively $F(x_0) \cap V \neq \emptyset$) then $F^+(V)$ (respectively $F^-(V)$) is an open set in X. Thus F is u.D.c. (respectively l.D.c.) at $x_0 \in X$. The proof is complete.

THEOREM 3. Let X be a topological space and let Y be a D-regular space [2]. If F is point compact and u.D.c. (l.D.c.), then F is u.s.c. (respectively l.s.c.).

PROOF. Suppose that V is an open set in Y with $F(x_0) \subset V$. Since Y is D-regular for every $y \in F(x_0)$, there is an open F_{σ} -set G_y such that $y \in G_y$ and $G_y \subset V$. If we define the family $\Sigma = \{G_y : y \in F(x_0)\}$, then it is an open cover of $F(x_0)$ and $F(x_0) \subset \bigcup G_y \subset V$. Since F is point compact and for each $y \in F(x_0)$, G_y is an open F_{σ} -set, there is a finite subcover of $F(x_0)$ such that $F(x_0) \subset \bigcup_{i=1}^n G_{y_i} \subset V$, and if we take $\bigcup G_{y_i} = G$, then it is an open F_{σ} -set. Also since F is u.D.c., for $F(x_0) \subset G$, there is an open set U_{x_0} such that $x_0 \in U_{x_0}$ and the implication $x \in U_{x_0} \Rightarrow F(x) \subset G \subset V$ holds. Thus F is u.s.c. at $x_0 \in X$. The other case is similarly proved. The proof is complete.

THEOREM 4. Let X and Y be topological spaces and let $F : X \hookrightarrow Y$ be a multifunction. If the graph function $G_F : X \to X \times Y$ is u.D.c. (l.D.c.), then F is u.D.c. (respectively l.D.c.).

PROOF. Suppose G_F is u.D.c. at $x_0 \in X$. Let V be an open F_{σ} -set with $F(x_0) \subset V$. Then $G_F(x) \subset X \times V$ and $X \times V$ is an open F_{σ} -set in $X \times Y$. Since G_F is u.D.c., there is an open set U with $x_0 \in U$ such that $G_F(U) \subset X \times V$. From [6], $U \subset G_F^+(X \times V) = X \cap F^+(V) = F^+(V)$ and so F is u.D.c. at $x_0 \in X$. Suppose G_F is l.D.c. at $x_0 \in X$. Let V be an open F_{σ} -set with $F(x_0) \cap V \neq \emptyset$. Then

$$G_F(x_0) \cap (X \times V) = (\{x_0\} \times F(x_0)) \cap (X \times V) = \{x_0\} \times (F(x_0) \cap V) \neq \emptyset$$

and $X \times V$ is an open F_{σ} -set in $X \times Y$. Since G_F is l.D.c., there is an open set U with $x_0 \in U$ such that $U \subset G_F^-(X \times V)$. From [6], $U \subset G_F^-(X \times V) = X \cap F^-(V) = F^-(V)$ and so F is l.D.c. at $x_0 \in X$. The proof is complete.

Let (X, τ) be a topological space and let $\{K_{\beta} : \beta \in \Delta\}$ be a closed cover of X. If for any subset F of X and for the collection $\{K_{\beta} : \beta \in \Delta\}$ the equation $\bigcup \overline{K_{\beta} \cap F} = \bigcup (\overline{K_{\beta} \cap F})$ holds, then the collection is called a hereditarily closure preserving closed cover of X [3].

THEOREM 5. Let X and Y be topological spaces. Then the following statements are true: (a) If $F: X \hookrightarrow Y$ is u.D.c.(l.D.c.), then the restriction multifunction $F|_A : A \hookrightarrow Y$ is u.D.c. (l.D.c.). (b) Let $F: X \hookrightarrow Y$ be a multifunction. If $\{U_{\alpha} : \alpha \in \Delta\}$ is an open cover of X and for each α , $F_{\alpha} = F|_{U_{\alpha}}$ is u.D.c.(l.D.c.), then F is u.D.c. (l.D.c.). (c) Let $F: X \hookrightarrow Y$ be a multifunction. If $\{K_{\beta} : \beta \in \Delta\}$ is a hereditarily closure preserving closed cover of X and for each $\beta \in \Delta$, $F_{\beta} = F|_{K_{\beta}}$ is u.D.c. (l.D.c.), then F is u.D.c. (respectively l.D.c.).

PROOF. (a) Let V be an open F_{σ} -set in A with $F|_A(x_0) \subset V$ ($F|_A(x_0) \cap V \neq \emptyset$). Since F is u.D.c. (respectively 1.D.c.) and $F|_A(x_0) = F(x_0) \subset V$ (respectively $F|_A(x_0) = F(x_0) \cap V \neq \emptyset$), there is an open neighborhood of x_0 such that the implication $x \in U \Rightarrow F(x) \subset V$ (respectively $F(x) \cap V \neq \emptyset$) holds. If we take $U_1 = U \cap A$, then U_1 is an open neighborhood of x_0 in A and $F|_A(U_1) \subset V$ (respectively $U_1 \subset F^-(V)$). Thus $F|_A$ is u.D.c. (respectively 1.D.c.) at $x_0 \in X$.

(b) Let V be an open F_{σ} -set of Y. Then $F^+(V) = \bigcup \{F_{\alpha}^+(V) : \alpha \in \Delta\}$ $(F^-(V) = \bigcup \{F_{\alpha}^-(V) : \alpha \in \Delta\})$ and since for each $\alpha \in \Delta$, F_{α} is u.D.c.(l.D.c.) and $F_{\alpha}^+(V)$

(respectively $F_{\alpha}^{-}(V)$) is an open set in U_{α} and hence in X. Thus $F^{+}(V)$ (respectively $F^{-}(V)$) being the union of open sets is open.

(c) Let K be a closed G_{δ} -set of Y. Then $F^+(K) = \bigcup \{F^+_{\beta}(K) : \beta \in \Delta\}$ $(F^-(K) = \bigcup \{F^-_{\beta}(K) : \beta \in \Delta\})$ and since for each $\alpha \in \Delta$, F_{β} is u.D.c. (respectively l.D.c.) and $F^+_{\beta}(K)$ (respectively $F^-_{\beta}(K)$) is closed in K_{β} and hence in X. Also since $\{K_{\beta} : \beta \in \Delta\}$ is a hereditarily closure preserving closed cover of X, the collection $\{F^+_{\beta}(K) : \beta \in \Delta\}$ (respectively $\{F^-_{\beta}(K) : \beta \in \Delta\}$) is a closure preserving collection of closed sets. Thus $F^+(K)$ (respectively $F^-(K)$) is closed.

The proof is complete.

THEOREM 6. Let $F : X \hookrightarrow Y$ and $G : Y \hookrightarrow Z$ be two multifunctions. If F is u.s.c. (l.s.c.) and $G : Y \hookrightarrow Z$ is u.D.c. (respectively l.D.c.), then $G \circ F : X \hookrightarrow Z$ is a u.D.c. (respectively l.D.c.)

PROOF. Let V be an open F_{σ} -set in Z. Since G is u.D.c. (1.D.c.), $G^+(V)$ (respectively $G^-(V)$) is an open set in Y. Also since F is u.s.c. (respectively l.s.c.), $F^+(G^+(V)) = (G \circ F)^+(V)$ (respectively $F^-(G^-(V)) = (G \circ F)^-(V)$) is an open set in X. Thus $G \circ F$ is u.D.c. (respectively l.D.c.) The proof is complete.

THEOREM 7. Let $F : (X, \tau) \hookrightarrow (Y, \vartheta)$ be a multifunction and let Y be extremally disconnected space. If F is l.D.c. (u.D.c.), then F is l.w.c. (respectively u.w.c.).

PROOF. Let V be an open set of Y. Since Y is extremally disconnected, \overline{V} is an open set of Y and so \overline{V} is an open F_{σ} -set of Y. Also since F is u.D.c. (l.D.c.), $F^+(\overline{V})$ (respectively $F^-(\overline{V})$) is open in X. Thus F is u.w.c. (respectively l.w.c.). The proof is complete.

THEOREM 8. Let $F: (X, \tau) \hookrightarrow (Y, \vartheta)$ be a multifunction and let Y be a regular space. If F is l.w.c., then F is l.D.c.

PROOF. Let F be l.w.c. at $x_0 \in X$ and let V be an open F_{σ} -set in Y with $F(x_0) \cap V \neq \emptyset$. Since Y is a regular space, for each $y \in F(x_0) \cap V$, there is an open set G_y such that $y \in G_y \subset \overline{G_y} \subset V$. Thus $F(x_0) \cap G_y \neq \emptyset$. Also since F is l.w.c., there is an open neighborhood U of x_0 such that the implication $x \in U \Rightarrow F(x) \cap \overline{G_y} \neq \emptyset$ holds. Hence $F(U) \cap \overline{G_y} \subset F(U) \cap V \neq \emptyset$ and F is l.D.c. at $x_0 \in X$. The proof is complete.

THEOREM 9. Let $F: (X, \tau) \hookrightarrow (Y, \vartheta)$ be a multifunction and let Y be a regular space. If the family $\overline{\Sigma} = \{\overline{T} : T \in \vartheta\}$ has the local finite property and F is u.w.c., then F is u.D.c.

PROOF. Let V be an open F_{σ} -set in Y with $F(x_0) \subset V$. Since Y is regular, for each $y \in F(x_0)$, there is an open set G_y such that $y \in G_y \subset \overline{G_y} \subset V$. So $F(x_0) \subset \bigcup_{y \in F(x_0)} G_y \subset \bigcup \overline{G_y} \subset V$. If we take $V_1 = \bigcup_{y \in F(x_0)} G_y$, then since F is u.w.c. at $x_0 \in X$, for $F(x_0) \subset V_1$, there is an open neighborhood U of x_0 such that $F(U) \subset \overline{V_1}$. Also since $\overline{\Sigma} = \{\overline{G_y} | G_y \in \vartheta\}$ has the local finite property $\overline{V_1} = \overline{\bigcup G_y} \subset \overline{\bigcup G_y} = \bigcup \overline{G_y} \subset V$, $F^+(V)$ is open in X. Thus F is u.D.c. at $x_0 \in X$. The proof is complete.

Now we give a multifunction F which is u.D.c. (l.D.c.) but not u.w.c. (respectively l.w.c.). Let $X = \{0, 1\}, \tau = \{\emptyset, X, \{1\}\}$ and $Y = \{a, b, c\}, \vartheta = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$. If we define $F : (X, \tau) \hookrightarrow (Y, \vartheta)$ with $F(0) = \{a\}, F(1) = \{b\}$, then F is u.D.c. (l.D.c.) but not u.w.c. (respectively l.w.c.) at $x_0 = 0$.

THEOREM 10. Let $F: X \hookrightarrow Y$ be a quotient multifunction. Then a multifunction $G: Y \hookrightarrow Z$ is u.D.c. if, and only if, $G \circ F$ is u.D.c.

PROOF. Since quotient map is u.D.c., from Theorem 6, $G \circ F$ is u.D.c. Conversely, let V be an open F_{σ} -set of Z. Then $(G \circ F)^+(V) = F^+(G^+(V))$ is open in X. Since F is a quotient map, $G^+(V)$ is open in Y, and so G is u.D.c. The proof is complete.

THEOREM 11. Suppose for each $\alpha \in \Delta$, $F_{\alpha} : X_{\alpha} \hookrightarrow Y_{\alpha}$ is a multifunction and let $F : \Pi X_{\alpha} \hookrightarrow \Pi Y_{\alpha}$ be a multifunction defined by $F((x_{\alpha})) = (F_{\alpha}(x_{\alpha}))$ for each point (x_{α}) in ΠX_{α} . If F is u.D.c. (l.D.c.), then for each $\alpha \in \Delta$, F_{α} is u.D.c. (respectively l.D.c.).

PROOF. Let G_{α_o} be a closed G_{δ} -set of Y_{α_o} . Then $G_{\alpha_o} \times \prod_{\alpha \neq \alpha_o} Y_{\alpha}$ is a closed G_{δ} set of ΠY_{α} . Since F is u.D.c. (l.D.c.), $F^-(G_{\alpha_o} \times \prod_{\alpha \neq \alpha_o} Y_{\alpha}) = F^-(G_{\alpha_o}) \times \prod_{\alpha \neq \alpha_o} X_{\alpha}$ (respectively $F^+(G_{\alpha_o} \times \prod_{\alpha \neq \alpha_o} Y_{\alpha}) = F^+(G_{\alpha_o}) \times \prod_{\alpha \neq \alpha_o} X_{\alpha}$) is closed in ΠX_{α} . Consequently $F^-_{\alpha_o}(G_{\alpha_o})$ (respectively $F^+(G_{\alpha_o})$) is closed in X_{α_o} and so G_{α_o} is u.D.c. (respectively l.D.c.). The proof is complete.

THEOREM 12. Let $F : X \to \Pi X_{\alpha}$ be a multifunction into a product space. If F is u.D.C. (l.D.c), then each $\alpha \in \Delta$, $P_{\alpha} \circ F$ is u.D.c. (respectively l.D.c.).

PROOF. Let G_{α_o} be an open F_{σ} -set of X_{α_o} . Then, $(P_{\alpha_o} \circ F)^+(G_{\alpha_o}) = F^+(P_{\alpha_o}^+(G_{\alpha_o}))$ = $F^+(G_{\alpha_o} \times \prod_{\alpha \neq \alpha_o} X_{\alpha})$ (respectively $(P_{\alpha_o} \circ F)^-(G_{\alpha_o}) = F^-(P_{\alpha_o}^-(G_{\alpha_o})) = F^-(G_{\alpha_o} \times \prod_{\alpha \neq \alpha_o} X_{\alpha})$). Since F is u.D.c. (respectively l.D.c.) and since $G_{\alpha_o} \times \prod_{\alpha \neq \alpha_o} X_{\alpha}$ is an open F_{σ} -set, $F^+(G_{\alpha_o} \times \prod_{\alpha \neq \alpha_o} X_{\alpha})$ (respectively $F^-(G_{\alpha_o} \times \prod_{\alpha \neq \alpha_o} X_{\alpha})$) is open in X. Thus $P_{\alpha} \circ F$ is u.D.c. (respectively l.D.c.). The proof is complete.

THEOREM 13. The set of all points of X for which $F : X \hookrightarrow Y$ is not u.D.c. is identical to the union of the boundaries of the inverse image of open F_{σ} -sets of Y.

PROOF. Suppose F is not u.D.c. at a point $x \in X$. Then there exists an open F_{σ} -set V containing F(x) such that for every open set U containing $x, F(U) \not\subseteq V$. Thus for every open set U containing $x, U \cap (X \setminus F^+(V)) \neq \emptyset$. Therefore, x cannot be an interior point of $F^+(V)$. Hence x is a boundary point of $F^+(V)$. Now, let x belong to the boundary of $F^+(V)$ for some open F_{σ} -set of Y (that is $x \in F^+(V)$ but $x \notin [F^+(V)]^o$). Then $F(x) \subset V$. If F is u.D.c. at x, then there is an open set U containing x such that $F(U) \subset V$. Thus $x \in U \subset F^+(V)$, and so x is an interior point of $F^+(V)$. Hence F is not u.D.c. at x. The proof is complete.

THEOREM 14. A u.D.c. image of a connected space is connected for a multifunction F.

PROOF. Let $F: X \hookrightarrow Y$ be a u.D.c. multifunction from a connected space X onto a space Y. Suppose Y is not connected and let $Y = A \cup B$ be a partition of Y. Then both A and B are open and closed subsets of Y. Since F is u.D.c., $F^+(A)$ and $F^+(B)$ are open subsets of X. In view of the fact that $F^+(A)$ and $F^+(B)$ are disjoint, $X = F^+(A) \cup F^+(B)$ is a partition of X. This is contrary to the connectedness of X. The proof is complete.

THEOREM 15. Let $F : X \to Y$ be u.D.c. If every pair of distinct points of Y are contained in disjoint open sets such that one of them may be chosen to be an F_{σ} -set. Then F has strongly closed graph.

PROOF. Suppose $(x, y) \notin G(F)$. Then $y \notin F(x)$. By the hypothesis on Y, there are disjoint open sets V_1 and V_2 containing F(x) and y respectively, and V_1 is an F_{σ} -set. Since F is u.D.c., $F^+(V_1)$ is open. Thus $U = F^+(V_1)$ is an open set containing x and $F(U) \subset V_1 \subset Y \setminus V_2$. Consequently, $U \times V$ does not contain any points of G(F), and so G(F) is strongly closed in $X \times Y$. The proof is complete.

Let (X, τ) be a topological space. Then X is said to be a D-normal space if for every distinct closed subsets K and F of X, there are two open F_{σ} -sets U and V such that $K \subseteq U, F \subseteq V$ and $U \cap V = \emptyset$.

THEOREM 16. Let F and G be u.D.c. and point closed multifunctions from a space X to a D-normal space Y. Then the set $A = \{x | F(x) \cap G(x) \neq \emptyset\}$ is closed in X.

PROOF. Let $x \in X \setminus A$. Then $F(x) \cap G(x) = \emptyset$ and so by the hypothesis on Y, there are disjoint open F_{σ} -sets U and V containing F(x) and G(x) respectively. Since F and G are u.D.c., the sets $F^+(U)$ and $G^+(V)$ are open and contain x. Let $H = F^+(U) \cap G^+(V)$. Then H is an open set containing x and $H \cap A = \emptyset$. Thus A is closed in X. The proof is complete.

As a corollary, the set of fixed points of a u.D.c. self map of a D-normal space is closed.

THEOREM 17. Let $F : X \hookrightarrow Y$ be u.D.c., $F(x) \neq F(y)$ for each distinct pair $x, y \in X$ and point closed from a topological space X to a D-normal space Y. Then X is Hausdorff.

PROOF. Let x and y be any two distinct points in X. Then $F(x) \cap F(y) = \emptyset$. Since Y is D-normal, there are disjoint open F_{σ} -sets U and V containing F(x) and F(y) respectively. Thus $F^+(U)$ and $F^+(V)$ are disjoint open sets containing x and y respectively. Thus X is Hausdorff. The proof is complete.

Let (X, τ) be a topological space. Since the intersection of two open F_{σ} -sets is an open F_{σ} -set, the collection of all open F_{σ} -subsets of (X, τ) is a base for a topology τ^* on X. It is immediate that a space (X, τ) is D-regular if, and only if, $\tau^* = \tau$ [3]. The following example shows that a D-regular space may not be first countable.

EXAMPLE. Let X be the set of positive integers. Let N(n, E) denote the number of integers in a set $E \subset X$ which are less than or equal to n. We describe the Appert's topology on X by declaring open any set which excludes the integer 1, or any set E containing 1 for which $\lim_{n\to\infty} N(n, E) = 1$. Then the Appert space is completely normal, completely regular and hence from [2] *D*-regular. However, it is not first countable.

THEOREM 18. Let (X, τ) be a topological space. Then the following statements are equivalent: (a) (X, τ) is a *D*-regular space. (b) Every u.D.c. and point compact multifunction *F* from a topological space *Y* into (X, τ) is u.s.c. (c) The identity mapping I_X from (X, τ^*) onto (X, τ) is continuous.

PROOF. (a) \Rightarrow (b): Let $F : (Y, \vartheta) \hookrightarrow (X, \tau)$ be a u.D.c. multifunction and let V be an open set in X with $F(x) \subset V$. Then since F is point compact and (X, τ) is D-regular, there is an open F_{σ} -set V_1 such that $F(x) \subset V_1 \subset V$. Since F is u.D.c., there exits an open set U containing x such that $F(U) \subset V_1 \subset V$. Thus F is u.s.c. at x.

(b) \Rightarrow (c): Let $I_X : (X, \tau^*) \hookrightarrow (X, \tau)$ be the identity mapping. Let $F(x) \subset V$ and V be an open F_{σ} -set in X. Then $I_X^+(V) = V$ is an open F_{σ} -set and $I_X^+(V) \in \tau^*$. Thus I_X is u.D.c. at x. From (b), I_X is u.s.c. at x.

 $(c) \Rightarrow (a)$: Let V an open set in (X, τ) with $x \in V$. From (c), $I_X : (X, \tau^*) \hookrightarrow (X, \tau)$ is u.s.c. and, for $I_X(x) = x \subset V$, there is an open F_{σ} -set U in (X, τ^*) such that $I_X(U) \subset V$ and $x \in U = I_X(U) \subset V$. Thus (X, τ) is D-regular space. The proof is complete.

In [1], a space X is said to be sequential if a subset U of X is open if, and only if, every sequence converging to a point in U is eventually in U.

THEOREM 19. Let $F : X \to Y$ be a u.D. continuous function from a sequential space X into a countably compact Hausdorff space Y. If Y has a neighborhood base of closed G_{δ} -sets then F is upper continuous.

References

- [1] S. P. Franklin, Spaces in which sequences suffice, Fund. Math., 61(1967), 51-56.
- [2] N. C. Heldermann, Developability and some new regularity axioms, Canad. J. Math., 33(3)(1981), 641-663.
- J. K. Kohli, D-continuous functions, D- regular spaces and D-Hausdorff spaces, Bull. Cal. Math. Soc., 84(1992), 39-46.
- [4] L. L. Herrington and P. E. Long, Characterizations of *H*-closed spaces, Proc. Amer. Math. Soc., 48(1975), 469-475.
- [5] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71(1951), 152-182.
- [6] T. Noiri and V. Popa, Almost weakly continuous multifunctions, Demonstratio Math., 26(2)(1993), 363-380.
- [7] V. I. Ponomarev, Properties of topological spaces preserved under multivalued continuous mappings on compacta, Amer. Math. Soc. Translations, (2)(38)(1964), 119-140.
- [8] M. K. Singal and S. P. Arya, On almost-regular spaces, Glasnik Mat. Ser III, 4(24)(1969), 89-99.
- [9] M. K. Singal and A. R. Singal, Almost continuous mapping, Yokohama Math. J., 16(1968), 63-73.
- [10] R. E. Smithson, Almost and weak continuity for multifunctions, Boll. Cal. Math. Soc., 70(1978), 383-390.
- [11] L. A. Steen and J. A. Seebach, Counterexamples in topology, Holt, Rinehard and Winston, Inc, 1970.
- [12] M. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-481.