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Abstract

In this paper, we define upper and lower D-continuous multifunctions and ob-
tain some of their characterizations and basic properties. Also some relationships
between D-continuity and other types of continuity are given.

In 1968, Singal and Singal [9] introduced and investigated the concept of almost
continuous functions. In 1981, Heldermann [2] introduced some new regularity axioms
and studied the class of D-regular spaces. In 1990, Kohli [3] introduced the concept
of D-continuous functions and some properties of D-continuous functions are given by
him. The purpose of this paper is to extend this concept and to provide some properties
of multifunctions.

A multifunction F : X < Y is a correspondence from X to 2¥ with F(z) a
nonempty subset of Y, for each 2 € X. Let A be a subset of a topological space (X, 7).
A° and A denote the interior and closure of A respectively. A subset A of X is called
regular open (regular closed) [12] if, and only if, A = (A)O (respectively A = (A4°)). A
space (X, 7) is said to be almost regular [8] if for every regular closed set F' and each
point x not belonging to F', there exist disjoint open sets U and V' containing F' and x
respectively. For a given topological space (X, 7), the collection of all sets of the form
Ut ={TCX:TCU}yU ={TCX:TNU # 0}) with U in 7, forms a basis
(respectively subbasis) for a topology on 2X (see [5]). This topology is called upper
(respectively lower) Vietoris topology and denoted by 7f (respectively 7.,). We will
denote such a multifunction by F : X — Y. For a multifunction F, the upper and
lower inverse set of a set B of Y will be denoted by F*(B) and F~(B) respectively, that
is, F*(B) ={z € X : F(z) C B} and F~(B) ={z € X : F(z)N B # 0}. The graph
G(F) of the multifunction F' : X — Y is strongly closed [4] if for each (z,y) ¢ G(F),
there exist open sets U and V' containing x and containing y respectively such that
(Ux V)NG(F) =0.

In [7], a multifunction F : X — Y is said to be (i) upper semi continuous (or u.s.c.)
at a point € X if for each open set V in Y with F(z) C V, there exists an open
set U containing  such that F(U) C V; and (ii) lower semi continuous (or l.s.c.) at a
point z € X if for each open set V in Y with F(z) NV # (), there exists an open set U
containing x such that F'(z) NV # @ for every z € U.

In [10], a multifunction F' : X — Y is said to be (i) upper weakly continuous (or
u.w.c.) at a point € X if for each open set V in Y with F(z) C V, there exists an
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open set U containing « such that F(U) C V; and (ii) lower weakly continuous (or
L.w.c.) at a point x € X if for each open set V in Y with F(z)NV # ), there exists an
open set U containing x such that F(2) NV # () for every z € U.

Let F: X — Y be a multi function. F is said to be upper D-continuous (briefly
u.D.c.) at g € X, if for each open F,-set V with F'(zg) C V, there exists an open
neighborhood U, of zg such that the implication = € U,, = F(x) C V holds. F is
said to be lower D-continuous (briefly 1.D.c.) at zy € X, if for each open F,-set V' with
F(x9) NV # 0 there exists an open neighborhood Uy, of x such that the implication
x €Uy, = F(xo)NV # 0 holds. F is said to be D-continuous (briefly D.c.) at zg € X,
if it is both u.D.c. and LD.c. at xp € X. Finally, F' is said to be u.D.c. (LD.c. or
D.c.) on X, if it has this property at each point = € X.

THEOREM 1. Let X and Y be topological spaces. For a multifunction F : X —
Y, the following statements are equivalent: (a) F' is u.D.c. (1.D.c.). (b) For every
open F,-set V, FY (V) (F~(V)) is an open set in X. (c) For every closed Gs-set K,
F~(K) (F"(K)) is closed in X. (d) For each x € X and each net {z,}aea which
converges to x, if V is an open Fy-set with F'(x) C V (F(z) NV # (), then there is an
@, € A such that for every a > a,, F(24) C V (respectively F(z,) NV # ().

PROOF. (a)=(b): If V is an open F,-set of Y, then for each x € F*(V), F(z) C V
and hence there is an open neighborhood U of z such that |J,., F(z) C V. Thus
FT(V), being a neighborhood of each of its points, is open.

(b)=(c): Let K be a closed Gs-set of Y. Then Y\K is an open F,-set and
FT(Y\K) = X\F~(K) is open. Thus F~(K) is closed in X.

(¢)=(b): Let V be an open F,-set. Then Y'\V is a cosed Gs-set and F~(Y\V) =
X\F+(V) is closed in X. Thus F* (V) is an open set in X.

(b)=>(a): Let x € X and let V be an open F,-set containing F(x). Then F*(V) is
an open set containing x and F(F*(V)) C V. Thus F is u.D.c. at x.

(b)=(d): Let {za}aca be anet in X which converges to z and let V' be an open
F,-set containing F(z). Then F* (V) is an open set containing x. Since {x,} converges
to z, there is an a, € A such that for every a > a,, ¥o € FT(V). Thus for every
a > a,, Flz,) CV.

(d)=(b): Let V be an open F,-set of Y. To show that F™ (V) is open, assume to
the contrary that there is x € F*(V) such that £+ (V) is not neighborhood of z. Then
there is a net {z,} in X which converges to z and misses F*(V) frequently. Then
{F(zq)} misses V frequently, which is a contradiction.

The proof for the case where F'is I.D.c. is similarly proved. The proof is complete.

As an example, let X = {0,1},7={0, X,{1}} and Y = {a,b,c}, ¥ = {0, Y, {a}, {b},
{a,b}}. If we define F : (X, 7) — (Y,9) with F'(0) = {a}, F(1) = {b}, then F is u.D.c.
(I.D.c.) but not u.s.c. (respectively ls.c.) at zg = 0.

THEOREM 2. Let F': (X,7) — (Y,9) be a multifunction. If F is u.s.c. (Ls.c.),
then F'is u.D.c. (respectively 1.D.c.).

PROOF. Suppose that F' is u.s.c. (ls.c.) at xg € X. If V is an open F,-set in YV
with F(xg) C V (respectively F(zo) NV # @) then F* (V) (respectively F'~(V)) is an
open setin X. Thus F is u.D.c. (respectively LD.c.) at zg € X. The proof is complete.
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THEOREM 3. Let X be a topological space and let Y be a D-regular space [2]. If
F is point compact and u.D.c. (1.D.c.), then F is u.s.c. (respectively l.s.c.).

PROOF. Suppose that V' is an open set in Y with F'(z¢) C V. Since Y is D-regular
for every y € F(xy), there is an open F,-set G, such that y € G, and G, C V. If
we define the family ¥ = {G, : y € F(x9)}, then it is an open cover of F(z,) and
F(zo) c UG, C V. Since F is point compact and for each y € F(z¢), G, is an open
F,-set, there is a finite subcover of F(z() such that F(zo) C Ui, Gy;, C V, and if we
take | JG,, = G, then it is an open F,-set. Also since F is u.D.c., for F/(z¢) C G, there
is an open set Uy, such that x¢ € U, and the implication x € U,, = F(z) CG CV
holds. Thus F is u.s.c. at g € X. The other case is similarly proved. The proof is
complete.

THEOREM 4. Let X and Y be topological spaces and let F' : X — Y be a
multifunction. If the graph function Gp : X — X xY is u.D.c. (1.D.c.), then F is
u.D.c. (respectively 1.D.c.).

PROOF. Suppose G isu.D.c. at g € X. Let V be an open F,-set with F(zg) C
V. Then Gp(z) € X xV and X x V is an open F,-set in X x Y. Since G is
u.D.c., there is an open set U with xp € U such that Gp(U) C X x V. From [6],
UCGEHX xV)=XnF*V)=F"(V)andso F is u.D.c. at o € X. Suppose Gp
is 1.D.c. at zg € X. Let V be an open F,-set with F(zo) NV # (. Then

G r(wo) N(X x V)= ({zo} x F(x0)) N (X x V) ={zo} x (F(zo)NV) #0

and X x V is an open F,-set in X X Y. Since G is l.D.c., there is an open set U with
zp € Usuch that U C GR(X x V). From [6], U C Go(X xV)=XNF~ (V) =F (V)
and so F is I.D.c. at xg € X. The proof is complete.

Let (X, 7) be a topological space and let {Kg: 5 € A} be a closed cover of X. If
for any subset F' of X and for the collection {K3 : 8 € A} the equation |JKg [ F =

U (K g F) holds, then the collection is called a hereditarily closure preserving closed
cover of X [3].

THEOREM 5. Let X and Y be topological spaces. Then the following statements
are true: (a) If F: X — Y is u.D.c.(l.D.c.), then the restriction multifunction F|4 :
A=Y isuD.c. (1.D.c). (b) Let F: X — Y be a multifunction. If {U, : a« € A}
is an open cover of X and for each «, F, = F|y, is u.D.c.(l.D.c.), then F is u.D.c.
(I.D.c.). (c) Let F' : X — Y be a multifunction. If {Kg: § € A} is a hereditarily
closure preserving closed cover of X and for each 3 € A, Iy = Flk, isu.D.c. (1.D.c.),
then F' is u.D.c. (respectively 1.D.c.).

PROOF. (a) Let V be an open F,-set in A with F|a(x9) CV (F|a(zo) NV # ().
Since F' is u.D.c. (respectively 1.D.c.) and F'|a(zg) = F(x¢) C V (respectively
Fla(xg) = F(x9) NV # (), there is an open neighborhood of zy such that the implica-
tionz € U = F(x) CV (respectively F(z)NV # @) holds. If we take U; = UNA, then
U is an open neighborhood of zp in A and F'|4 (U1) C V (respectively U; C F~(V)).
Thus F'|4 is u.D.c. (respectively 1.D.c.) at xzp € X.

(b) Let V be an open F,-set of Y. Then F* (V) = | {FS(V):ae A} (F~(V) =
U{F; (V) : @« € A}) and since for each o € A, F,, is uw.D.c.(lL.D.c.) and F; (V)
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(respectively F; (V') is an open set in U, and hence in X. Thus F* (V) (respectively
F~(V)) being the union of open sets is open.

(c) Let K be a closed Gs-set of Y. Then F(K) = U{FJ(K) e} (F7(K)=
U{F; (K): B € A}) and since for each o € A, Fj is u.D.c. (respectively 1.D.c.) and
Fg (K) (respectively Fjz (K)) is closed in K and hence in X. Also since {Kg : f € A}
is a hereditarily closure preserving closed cover of X, the collection {F;r (K):pe A}
(respectively {Fy (K) : 8 € A}) is a closure preserving collection of closed sets. Thus
FT(K) (respectively F~(K)) is closed.

The proof is complete.

THEOREM 6. Let F': X — Y and G : Y — Z be two multifunctions. If F is
us.c. (Ls.c.) and G:Y — Zisu.D.c. (respectively LD.c.), then Go F': X — Zis a
u.D.c. (respectively 1.D.c.)

PROOF. Let V be an open F,-set in Z. Since G is w.D.c. (LD.c.), GT(V) (re-
spectively G7(V)) is an open set in Y. Also since F is us.c. (respectively ls.c.),
FH(GT(V)) = (G oF)T(V) (respectively F~ (G~ (V)) = (Go F)~(V)) is an open set
in X. Thus G o F is u.D.c. (respectively 1.D.c.) The proof is complete.

THEOREM 7. Let F: (X, 7) — (Y,9) be a multifunction and let Y be extremally
disconnected space. If F'is LD.c. (u.D.c.), then F is l.w.c. (respectively u.w.c.).

PROOF. Let V be an open set of Y. Since Y is extremally disconnected, V is an
open set of Y and so V is an open F,-set of Y. Alsosince F is u.D.c. (1.D.c.), F¥(V)
(respectively F~(V)) is open in X. Thus F is u.w.c. (respectively L.w.c.). The proof
is complete.

THEOREM 8. Let F: (X,7) — (Y,9) be a multifunction and let Y be a regular
space. If F isl.w.c., then F is1.D.c.

PROOF. Let F' be lw.c. at o € X and let V be an open F,-set in Y with
F(x9) NV # (. Since Y is a regular space, for each y € F(z9) NV, there is an open set
G, such that y € G, € G, C V. Thus F(x9) N G, # 0. Also since F is L.w.c., there
is an open neighborhood U of x¢ such that the implication € U = F(z) NG, # 0
holds. Hence F(U)N G, C F(U)NV # @ and F is LD.c. at 2y € X. The proof is
complete.

THEOREM 9. Let F: (X,7) — (Y,9) be a multifunction and let Y be a regular
space. If the family ¥ = {T : T € ¥} has the local finite property and F is u.w.c., then
Fisu.D.c.

PROOF. Let V be an open F,-set in Y with F(xzp) C V. Since Y is regular,
for each y € F(xo), there is an open set G, such that y € G, C G_y Cc V. So
F(z0) C Uyep(ey Gy CUGy C V. If wetake Vi = U, ¢ p(,,) Gy, then since F is w.w.c.
at xg € X, for F'(xg) C Vi, there is an open neighborhood U of 2 such that F/(U) C V.
Also since & = {G_y\Gy € ¥} has the local finite property V; = uG, C UG_y = UG_y cV,
F*(V)isopenin X. Thus F isu.D.c. at 2o € X. The proof is complete.

Now we give a multifunction F' which is u.D.c. (L D.c.) but not u.w.c. (respectively
lLw.ec.). Let X = {0,1},7 = {0, X, {1}} and Y = {a,b,c}, 9 = {0,Y, {a}, {b}, {a,b}}.
If we define F' : (X, 7) — (Y,9) with F(0) = {a}, F(1) = {b}, then F isu.D.c. (1.D.c.)
but not u.w.c. (respectively Lw.c.) at zg = 0.
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THEOREM 10. Let F': X — Y be a quotient multifunction. Then a multifunction
G:Y — ZisuD.c. if, and only if, G o F' is u.D.c.

PROOF. Since quotient map is u.D.c., from Theorem 6, Go F' is u.D.c. Conversely,
let V be an open F,-set of Z. Then (Go F)" (V)= F*(G"(V)) is open in X. Since
F is a quotient map, GT (V) is open in Y, and so G is u.D.c. The proof is complete.

THEOREM 11. Suppose for each o € A, F, : X, — Y, is a multifunction and
let F: 11X, — IIY, be a multifunction defined by F((z4)) = (Fa(zs)) for each point
(o) in IX,. If Fis u.D.c. (I.D.c.), then for each a € A, F, is u.D.c. (respectively
1.D.c.).

PROOF. Let G,, be a closed Gs-set of Y,,,. Then G, % Ha#ao Y, is a closed G-
set of IIYy,. Since F'is w.D.c. (LD.c.), F™(Ga, X [[ 424, Ya) = F7(Ga,) X [0, Xa
(respectively F*(Ga, X [[1za, Ya) = FT(Ga,) x 1444, Xa) is closed in IIX,. Con-
sequently F, (G.,) (resepctively F™(G,)) is closed in X,, and so G, is u.D.c.
(respectively 1.D.c.). The proof is complete.

THEOREM 12. Let F : X — I1X, be a multifunction into a product space. If F
is u.D.C. (1.D.c), then each « € A, P, o F' isu.D.c. (respectively 1.D.c.).

PROOF. Let G, bean open Fy-set of X,,. Then, (Py,0F)"(Ga,) = F*(Py (Ga,))
= Ft(G,, x Ha#ao Xo) (respectively (Py, 0 F) " (Ga,) = F~ (P, (Ga,)) = F~ (Ga, X
L. 2a, Xa))- Since F'is u.D.c. (respectively 1.D.c.) and since Ga, X [[,,, Xa is an
open Fo-set, ™ (Ga, X [1,24, Xao) (respectively F™(Ga, X [],.,, Xa)) is open in X.
Thus P, o F isu.D.c. (respectively 1. D.c.). The proof is complete.

THEOREM 13. The set of all points of X for which F' : X < Y is not u.D.c. is
identical to the union of the boundaries of the inverse image of open F,-sets of Y.

PROOF. Suppose F is not u.D.c. at a point x € X. Then there exists an open
F,-set V containing F(x) such that for every open set U containing =, F(U) £V.
Thus for every open set U containing =, U N (X\F+(V)) # 0. Therefore, z cannot
be an interior point of F* (V). Hence z is a boundary point of F* (V). Now, let =
belong to the boundary of F (V) for some open F,-set of Y (that is z € F™ (V) but
z ¢ [F*(V)]°). Then F(xz) C V. If F is u.D.c. at z, then there is an open set U
containing x such that F(U) C V. Thus x € U C F*(V), and so z is an interior point
of FT(V). This is contrary to the fact that « belongs to the boundary of F* (V). Hence
F is not w.D.c. at x. The proof is complete.

THEOREM 14. A u.D.c. image of a connected space is connected for a multifunc-
tion F'

PROOF. Let F': X — Y be a u.D.c. multifunction from a connected space X
onto a space Y. Suppose Y is not connected and let Y = AU B be a partition of Y.
Then both A and B are open and closed subsets of Y. Since F is u.D.c., FT(A) and
F*(B) are open subsets of X. In view of the fact that F*(A) and F*(B) are disjoint,
X = Ft(A)U F*(B) is a partition of X. This is contrary to the connectedness of X.
The proof is complete.

THEOREM 15. Let F' : X — Y be u.D.c. If every pair of distinct points of Y are
contained in disjoint open sets such that one of them may be chosen to be an F,-set.
Then F has strongly closed graph.
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PROOF. Suppose (x,y) ¢ G(F). Then y ¢ F(z). By the hypothesis on Y, there
are disjoint open sets V7 and V5 containing F'(z) and y respectively, and V7 is an F,-set.
Since F is u.D.c., FT(V;) is open. Thus U = F*(V}) is an open set containing  and
F(U) c V; € Y\V;. Consequently, U x V does not contain any points of G(F'), and
so G(F) is strongly closed in X x Y. The proof is complete.

Let (X,7) be a topological space. Then X is said to be a D-normal space if for
every distinct closed subsets K and F of X, there are two open F,-sets U and V such
that K CU, FCVand UNV = 0.

THEOREM 16. Let F and G be u.D.c. and point closed multifunctions from a
space X to a D-normal space Y. Then the set A = {z|F(z) N G(x) # 0} is closed in
X.

PROOF. Let z € X\A. Then F(z) N G(z) = ( and so by the hypothesis on
Y, there are disjoint open Fy-sets U and V containing F'(z) and G(x) respectively.
Since F' and G are u.D.c., the sets F*(U) and GT(V) are open and contain x. Let
H =Ft(U)NG" (V). Then H is an open set containing z and H N A = (). Thus A is
closed in X. The proof is complete.

As a corollary, the set of fixed points of a u.D.c. self map of a D-normal space is
closed.

THEOREM 17. Let F : X — Y be u.D.c., F(z) # F(y) for each distinct pair
z,y € X and point closed from a topological space X to a D-normal space Y. Then
X is Hausdorff.

PROOF. Let z and y be any two distinct points in X. Then F(x) N F(y) = 0.
Since Y is D-normal, there are disjoint open F,-sets U and V' containing F'(z) and
F(y) respectively. Thus F*(U) and FT(V) are disjoint open sets containing = and y
respectively. Thus X is Hausdorff. The proof is complete.

Let (X,7) be a topological space. Since the intersection of two open F,-sets is an
open F,-set, the collection of all open F,-subsets of (X, 7) is a base for a topology 7*
on X. It is immediate that a space (X, 7) is D-regular if, and only if, 7* = 7 [3]. The
following example shows that a D-regular space may not be first countable.

EXAMPLE. Let X be the set of positive integers. Let N(n, E') denote the number
of integers in a set £ C X which are less than or equal to n. We describe the Appert’s
topology on X by declaring open any set which excludes the integer 1, or any set
E containing 1 for which lim, N (n, E) = 1. Then the Appert space is completely
normal, completely regular and hence from [2] D-regular. However, it is not first
countable.

THEOREM 18. Let (X,7) be a topological space. Then the following statements
are equivalent: (a) (X, 7) is a D-regular space. (b) Every u.D.c. and point com-
pact multifunction F from a topological space Y into (X,7) is u.s.c. (¢) The identity
mapping Ix from (X,7") onto (X, 7) is continuous.

PROOF. (a)=(b): Let F : (Y,¥) — (X,7) be a u.D.c. multifunction and let
V be an open set in X with F'(x) C V. Then since F is point compact and (X, 7) is
D-regular, there is an open F,-set V; such that F(x) C V4 C V. Since F is u.D.c.,there
exits an open set U containing x such that F(U) C V4 C V. Thus F is u.s.c. at .
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(b)=(c): Let Ix : (X,7*) — (X,7) be the identity mapping. Let F(z) C V and V
be an open F,-set in X. Then I};(V) = V is an open F,-set and I} (V) € 7*. Thus
Ix is w.D.c. at . From (b), Ix isu.s.c. at x.

(¢)=(a): Let V an open set in (X, 7) with € V. From (c), Ix : (X,7*) — (X, 7)
is ws.c. and, for Ix(z) = x C V, there is an open F,-set U in (X,7*) such that
Ix(U)cVand z € U= 1Ix(U) C V. Thus (X,7) is D-regular space. The proof is
complete.

In [1], a space X is said to be sequential if a subset U of X is open if, and only if,
every sequence converging to a point in U is eventually in U.

THEOREM 19. Let F : X — Y be a u.D. continuous function from a sequential
space X into a countably compact Hausdorff space Y. If Y has a neighborhood base
of closed Gs-sets then F' is upper continuous.
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