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Abstract

We discuss the optimal boundary control governed by a nonlinear diffusion
equation, and establish the existence and stability of the optimal control.

In this paper, we are concerned with the optimal boundary control governed by the
following nonlinear heat conduction equation

%—I—divf—i—)\u:Q (z,t) € Qr = © x (0,T), (1)
subject to the initial value condition
u(z,0) = up(x), x € O, (2)
and the boundary value condition
J it = —h(u—a), (x,t) € 90 x (0,T), (3)

where J = —|Vu[P~2Vu is the heat flux, p > 2, ©® € RY is a bounded domain with
smooth boundary, 7 denotes the outward normal to the boundary 90, A is a positive
constant, ug(z) is a nonnegative bounded function and & is the heat transfer coefficient
which we take as our control. The cost functional is chosen as

J(h) :% ﬁ// (u—Zd)dedtﬂ/ h’dsdt p, h € Uny, (4)
Qr 00 x(0,T)

where Uy, is the admissible set, namely,
Uy ={h|0<h<M,heL*00x(0,T),h=00n 00 \T}.

Here T is a partial boundary of © with mesI" > 0, Z; is the desired temperature distri-
bution, the coefficient § and v are per unit costs associated with failing to achieve the
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98 Nonlinear Diffusion Equation

desired temperature distribution and with imposing a heat transfer coefficient different
from zero. According to different requests, 3 and  can take different values. Then the
optimal control problem of the temperature system is

To find a h* € Upy, s.t. J(R*) = inf J(h). (5)

heUnm

Thus, the state equation (1) with the initial and boundary value condition (2), (3),
together with the cost functional (4), and question (5) compose a mathematical model
of the optimal boundary control of the heat transfer system. If u > «, the system
releases heat, while if u < «, the system absorbs heat.

It was Lenhart and Wilson [1] who first studied the optimal control for such kind of
system with p = 2, established the existence, uniqueness and stability of the optimal
control, and proved that the optimal control can be formulated by h* = qu, where ¢
is a nonnegative function independent of u. Later on, similar results were obtained
by several authors, see for example [5], [6] and [7]. It is well known that for the
classical heat conduction equation, i.e., the case where p = 2, the speed of propagation
is infinite. However, for the case where p > 2, the state equation becomes the p-
Laplace equation, whose solutions possess the property of finite speed of propagation
of disturbances. Hence, it is more natural to consider the heat transfer system governed
by the p-Laplace equation.

Due to the degeneracy of our equations, we are only interested in weak solu-
tions to our problem (1)—(3) in the following sense: A nonnegative function u €
C(0,T; L*(©)) N LP (0, T; WP(©)) is said to be a weak solution of the problem (1)—(3)
if the following integral equality holds

/u(:v,T)Lp(:c,T)dx—i-// |VulP~2Vu - Vpdadt

@ T

—|—/ h(s,t)(u(s,t)—oz)go(s,t)dsdt—l—// Au(z, t)p(z, t)dxdt
00 x(0,7) -

_/euo(zr)sﬁ(flf,())d:z:—// (e, t)os(x, t)dadt
o T (6)

where ¢ is an arbitrary test function in C*(Q;)), 7 € (0,T) and Q, = © x (0,7).

The main results of this paper are as follows.

THEOREM 1. Assume that Z; € L?(Qr), uo € C*(©) and satisfies the following
compatibility condition

|VuolP2Vug - i = —hug, = € 00.

Then there exists an optimal control h* € Uj; which minimizes the cost functional
J(h) defined by (4).

As for the stability of the optimal control i, we have

THEOREM 2. Suppose v = u(h) and ue = u(h + €l) are solutions of problem
(1)—(3), corresponding to h € Upy, h + €l € Uy respectively. Then

lue —ullL2(0r) = O(e), € — 0.
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We need several lemmas which will be used in the proof of our main results.
LEMMA 1. For any u, v € LP(0,T; W?(0)), the following inequality holds:

// (|Vu[P~2Vu — |Vo|P~2Vv) - V(u — v)dxdt > 0.

Indeed, the above inequality follows easily from the convexity of ®(X) = | X|P.
LEMMA 2 (Feng [3]). Let By, B and Bj be reflexive Banach spaces which satisfy

c c
By — B — Bj, where — denotes imbedding and — denotes compact imbedding.
Then we have

L7(0,T; Bo) N {6]¢4 € L™ (0,T; By)} S L70(0, T; B);
L*=(0,T; Bo) N {6]¢y € L2(0,T; B,)} < C(0,T; B):

L7(0,T; B) N {o|¢y € L(0,T; B)} < C(0,T; B).

Here 1 <1y, 11 < o0, and 1 < 19 < 00.

LEMMA 3. Under the assumption in Theorem 1, there exists a unique solution wuy,
of the problem (1)—(3) for any h € Uy,;.

PROOF. For the existence of solution wuy, we refer to [2]. The uniqueness can also
be proved in a rather standard way as follows. Let uy, ug be solutions of the problem
(1)—(3). From the definition of a solution of (1)-(3), we have

// (|Vui|P2Vuy — |Vug|P~*Vu ) Vdrdt — // (u1 — ug)prdadt
Q- Q-
—|—/ h(ur — ug)pdsdt + // Aur — ug)pdxdt
20 x(0,7) -
= [ (e 7) = wa(a )
e

for all 7 € (0,T). Choosing ¢ = u; — ug, we obtain
// (|Vur [P2Vuy — |Vug[P~2Vug) - V(uy — ug)dzdt
QT
—|—/ h(uy — ug)?dsdt + // Muy — ug)?dadt
00 x(0,7) -
= // (ug — u2)(uy — ug)idaxdt — / (u1(z,7) — ug(x, 7))%de,
_ e
for all 7 € (0,T). Noticing that

// ([Vur[P~2Vuy — [Vua[P~*Vaug) - V(ug — us) >0,
Qr
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we get

1
/ h(uy — ug)?dsdt —l—// Muy — ug)?dadt < —= / (ug — ug)?*(z, 7)dx <0,
90 %(0,7) T 2 /e

which implies that u(x,t) = ua(x,t), a.e. (x,t) € Qr.

We are now in a position to present and prove our main results.

First consider Theorem 1. Without loss of generality, we assume that & = 0. Let
{hn} be a sequence in Uy, for which

lim J(h,)= inf J(h).

n— 00 heUnm

By Lemma 3, for each n, we can define u,, = u(h,) as the solution of the problem
(1)—(3) with h = h,,, namely, u,, satisfies the following integral equality

/Un(xaT)W(sz)dz_F// |Vun|p_2Vuan0d:cdt

@ T

+/ hn(s,t)un(s,t)go(s,t)dsdt+// Ay (2, t)p (2, t)dxdt
00 x(0,7) -

—/ uo(:v)go(:v,O)dx—// U (2, t) o (z, t)dadt
@ T

I (7)

Using the regularity results in [4] for the p-Laplace equation, we see that u,; € L?(Qr)
and satisfies the following estimate

// |t (2, t)|*dadt < C, 7 € (0,T), (8)
Q-

where C'is a positive constant independent of n. By virtue of this and the definition of
weak solutions, after an approximation process, we may always choose u,,, or ¥u,, for
some smooth function 1, as a test function in (7). First, take u,, as the test function
in (7) and obtain

3 /@ (W2 (2, 7) — w3(x)}da + / / |V

+ / / hypu? dxdt + / / u? dxdt
0o Joe .
= 0.

(9)
Noticing that the last three terms in (8) are nonnegative, we have
/ u? (2, 7)dr < / ud(z)dz, 7 € (0,T), (10)
e e

// [V (z,t)[Pdedt < %/@u%(z)dw, 7€ (0,7T). (11)
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From Lemma 2, there exists a subsequence of {u,}, denoted also by {u,}, u* €
C(0,T;L*(©)) N LP(0, T; WP(©)) and w € LP/P=1(Q7), which satisfy u, — u*
a.e. Qr, up; — u} in L?(Qr), Vu, — Vu* in LP(Qr), and |Vu,[P~?Vu, — w in
Lr/(e=1(Qr). We claim that w = |Vu*[P~2Vu*. Indeed, in view of

// u*aptdxdt—// wigozidxdt—// AuFpdxdt = 0, (12)
Qr Qr Qr

for p € C§°(Qr), we need only to show the following

// |Vu*|P~2Vu* - Vipdzdt = // wipg, dedt, ¢ € C5°(Qr). (13)
Qr Qr

Actually, for any v € LP(0,T; WHP(©))NC(0,T; L*(0)), ¢ € C§°(Qr), 0 <9 < 1,
suppy C ©, we have

/ V(| Vun P2V, — |VolP~2Vo) - V(u, —v)dzdt > 0. (14)
Qr

Choosing ¢ = tYu,, in (7), we obtain

/ / Mpu? dadt + / Y|V, [Pdrdt
Qr Qr

1

— 5/ zbtuid:cdt—// U |Vun |P~2Vu, Vipdadt.
Qr T

It follows from (14) that

1

—/ wtuid:cdt—// un|Vun|p_2VunV1/)d:cdt
2 Qr Qr

- / V|V, P2V, - Vodzdt — / / Mpu? dxdt
QT Qr

—/ Y|Vo[P~2Vu - V(u, — v)dzdt
Qr

> 0 (15)
Letting n — oo in (15), we get

1
—/ Uy w* A dxdt — // wrw;,, drdt — / Yw;v,, drdt
T Qr

// Mpu*? dadt — / Y| Vu|P2 Vo - V(u* — v)dzdt
> 0 (16)

Take ¢u* as a test function in (12) to obtain

// u*21/1td:1:dt—// Wiy, w dxdt
- / / wipul, dedt — / / M2 pdadt
QT QT

-0 (17)
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Using (16), we have
/ Y(w; — |VolP~ 20, ) (uk — vy, )dadt > 0. (18)
Qr
Choosing v = u* — 0 in (18), where 0 > 0, ¢ € C§°(Qr), we get
[ vt =90 = 0002w = 00), )i ot 2 0,
Qr
Letting § — 0, we have
[ wtwi= 190 P2 )on dadt 2 0, ¢ € CF(@2)
Qr

Obviously, if we let 8 < 0, we can get another inequality which has reverse direction.
Therefore, we can choose a function v, with suppy C suppy, and ¥ = 1 on suppyp,
such that (13) is true, which implies w = |Vu*[P=2Vu*.
By
By = h* in L=((0,T) x 90),
and the continuity of the mapping from H'(0) to L?(00), we have
u, — u* in L2((0,T); L?(0©)),

and let n — oo in (7), we see that u* is a weak solution of the problem (1)—(3) with
h* as the heat transfer coefficient.

At last, by the lower semicontinuity of the cost functional and using the weak
convergencies derived above, we see that A* is an optimal control. The proof of Theorem
1 is complete.

We now turn to the proof of Theorem 1. From the definition of a solution to
our problem (1)—(3), we see that u. and u satisfy the integral equality (7). Choosing
¢ =u. —uin (7), we have

;/(ug(:c T)—u(z,T)) d:z:—l—// |Vue [P~2Vu .V (ue — u)dadt

// |VulP~2Vu - V(u: — u) d:vdt—i—// )2dxdt
Qr Qr
/ / e —u) dsdt—l—/ / elue(ue — u)dsdt

20 20

Using
// (|Vue[P~2Vu, — |[VulP~2Vu) - V(ue — u)dadt > 0,
T

// e —u) d:z:dt<el/ / ue(u c)dsdt < Ce.
T 00

The proof is complete.

we get
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