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Abstract

The structure properties of integral submanifold imbedding mapping for a
class of algebraically Liouville integrable Hamiltonian systems on cotangent phase
spaces are studied in relation with Picard -Fuchs type equations. It is shown that
these equations can be constructed by making use of a given a priori set of invo-
lutive invariants and proved that their solutions in the Hamilton-Jacobi separable
variable case give rise to the integral submanifold imbedding mapping, which is
known to be a main ingredient for Liouville-Arnold integrability by quadratures
of the Hamiltonian system under consideration.

1 Introduction

We consider a completely integrable Liouville-Arnold Hamiltonian system [1, 2] on a
cotangent canonically symplectic manifold (T ∗(Rn),ω(2)), n ∈ Z+, possessing exactly n
functionally independent and Poisson commuting algebraic polynomial invariants Hj :
T ∗(Rn) → R, j = 1, n. Due to the Liouville-Arnold theorem [1, 2], this Hamiltonian
system can be completely integrated by quadratures in quasi-periodic functions on
its integral submanifold when this submanifold is compact. This is equivalent to the
statement that this compact integral submanifold is diffeomorphic to a torus Tn, and
that makes it possible to formulate the problem of integrating the system by means
of searching the corresponding integral submanifold imbedding mapping πh : M

n
h −→

T ∗(Rn), where

Mn
h :=

�
(q, p) ∈ T ∗(Rn) : Hj(q, p) = hj ∈ R, j = 1, n

�
. (1)

SinceMn
h * Tn, and the integral submanifold (1) is invariant subject to all Hamiltonian

flows Kj : T
∗(Rn)→ T (T ∗(Rn)), j = 1, n, where

iKj
ω(2) = −dHj , (2)
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there exist [1, 2] corresponding “action-angle”-coordinates (ϕ, γ) ∈ (Tnγ ,Rn) on the
torus Tnγ Mn

h , specifying its imbedding πγ : T
n
γ → T ∗(Rn) by means of a set of

smooth functions γ ∈ D(Rn), where

Tnγ :=
�
(q, p) ∈ T ∗(Rn) : γj(H) = γj ∈ R, j = 1, n

�
. (3)

The mapping γ : Rn 6 h→ Rn induced by (3) is of great interest in many applications
and was studied earlier by Picard and Fuchs subject to the corresponding differential
equations it satisfies:

∂γj(h)/∂hi = Fij(γ;h), (4)

where h ∈ Rn and Fij : R
n×Rn → R, i, j = 1, n, are some almost everywhere smooth

functions. In the case where the right hand side of (4) is a set of algebraic functions on
Cn× Cn 6 (γ;h), all Hamiltonian flows Kj : T ∗(Rn)→ T (T ∗(Rn)), j = 1, n, are said
to be algebraically completely integrable in quadratures. Equations such as (4) were
studied in [3], a recent example can also be found in [4].

2 Canonical Transformations Properties

It is clear that the Picard-Fuchs equations (4) are related with the associated canon-
ical transformation of the symplectic 2-form ω(2) ∈ Λ2(T ∗(Rn)) in a neighborhood
U(Mn

h ) of the integral submanifold Mn
h ⊂ T ∗(Rn). More precisely, denote ω(2)(q, p) =

dpr∗α(1)(q; p), where for (q, p) ∈ T ∗(Rn),

α(1)(q; p) :=
n[
j=1

pjdqj = kp, dql ∈ Λ1(Rn) (5)

is the canonical Liouville 1-form on Rn, k·, ·l is the usual scalar product in Rn, and
pr : T ∗(Rn)→ Rn is the bundle projection. We define a mapping dSq : R

n → T ∗q (R
n),

such that on Mn
h the relationship

pr∗α(1)(q; p) + kt, dhl = dSq(h), (6)

holds, where t ∈ Rn is the set of evolution parameters. From (6) one gets right away

Sq(h) =
U q
q(0)
kp, dql

���
Mn

h

for any q, q(0) ∈ Mn
h . On the other hand one can define a

generating function Sµ : R
n → R such that

dSµ : R
n → T ∗µ(M

n
h ), (7)

where µ ∈ Mn
h ⊗nj=1S1j are the global separable coordinates existing on Mn

h owing
to the Liouville-Arnold theorem. Thus we have the following canonical relationship

kw, dµl+ kt, dhl = dSµ(h), (8)

where wj := wj(µj ;h) ∈ T ∗µj (S1j) for every j = 1, n. Whence

Sµ(h) =
n[
j=1

] µj

µ
(0)
j

w(λ;h)dλ, (9)
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satisfies onMn
h ⊂ T ∗(Rn) the following relationship dSµ+dLµ = dSq|q=q(µ;h) for some

mapping Lµ : Rn → R. As a result of (9) we get the following important expressions

ti = ∂Sµ(h)/∂hi, kp, ∂q/∂µil = wi + ∂Lµ/∂µi, i = 1, n. (10)

A construction similar to the above can be done subject to the imbedded torus Tnγ ⊂
T ∗(Rn) : dS̃q(γ) :=

Sn
j=1 pjdqj +

Sn
i=1 ϕidγi, where in view of (7), S̃q(γ) := Sq(ξ(γ)),

ξ(γ) = h, for all (q; γ) ∈ U(Mn
h ). For angle coordinates ϕ ∈ Tnγ , we obtain from dS̃q(γ)

that ϕi = ∂S̃q(γ)/∂γi for all i = 1, n. As ϕi ∈ R/2πZ, i = 1, n, we may easily derive
1

2π

L
σ
(h)
j

dϕi = δij =
1

2π

∂

∂γi

L
σ
(h)
j

dS̃q(γ) =
1

2π

∂

∂γi

L
σ
(h)
j

kp, dql (11)

for all canonical cycles σ
(h)
j ⊂Mn

h , j = 1, n, constituting a basis of the one dimensional

homology group H1(Mn
h ;Z). It follows that for all i = 1, n, “action” variables can be

found as γi =
1
2π

K
σ
(h)
i

kp, dql . Recall now that Mn
h * Tnγ are also diffeomorphic to

⊗nj=1S1j , where S1j , j = 1, n, are some one-dimensional real circles. The evolution along
any of the vector fields Kj : T

∗(Rn) → T (T ∗(Rn)), j = 1, n, on Mn
h ⊂ T ∗(Rn) is

known [1, 2] to be a linear winding around the torus Tnγ . This can also be interpreted

in the following manner: the independent global coordinates on circles S1j , j = 1, n,
introduced above are such that the resulting evolution undergoes a quasiperiodic mo-
tion. These coordinates may still be called Hamilton-Jacobi and are important for
accomplishing the complete integrability by quadratures by solving the corresponding
Picard-Fuchs type equations.
Let us denote these separable coordinates on the integral submanifold Mn

h *
⊗nj=1S1j by µj ∈ S1j , j = 1, n, and define the corresponding imbedding mapping
πh :M

n
h → T ∗(Rn) as

q = q(µ;h), p = p(µ;h). (12)

There exist two important cases. The first case is related to the integral submanifold
Mn
h ⊂ T ∗(Rn) which can be parametrized as a manifold by means of the base coordi-

nates q ∈ Rn of the cotangent bundle T ∗(Rn). This can be explained as follows: the
canonical Liouville 1-form α(1) ∈ Λ1(Rn), in accordance with the diagram

T ∗( Mn
h ) * T ∗(⊗nj=1S1j ) π∗←− T ∗(Rn)

pr ↓ pr ↓ pr ↓
Mn
h * ⊗nj=1S1j π→ Rn

(13)

is mapped by the imbedding mapping π = pr · πh :Mn
h → Rn not depending on a set

of parameters h ∈ Rn, into the 1-form

α
(1)
h = π∗α(1) =

n[
j=1

wj(µj ;h)dµj , (14)

where (µ,w) ∈ T ∗(⊗nj=1S1j) * ⊗nj=1T ∗(S1j ). The imbedding mapping π : Mn
h → Rn

due to (14) reduces the function Lµ : Rn → R to zero and gives rise to the generating
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function Sµ : R
n → R which satisfies the condition dSµ = dSq|q=q(µ) ,where as before

Sq(h) =
Sn

j=1 pjdqj +
Sn

j=1 tjdhj and det ||∂q(µ)/∂µ|| 9= 0 almost everywhere on Mn
h

for all h ∈ Rn. Similar to (10), we now have

tj = ∂Sµ(h)/∂hj (15)

for j = 1, n. From the second part of the imbedding mapping (12) we arrive, in view
of (14), at the following simple result: pi =

Sn
j=1wj(µj ;h)∂µj/∂qi, where i = 1, n

and det ||∂µ(q)/∂q|| 9= 0 almost everywhere on π(Mn
h ) due to the local invertibility

of the imbedding mapping π : Mn
h → Rn. Thus, we can assert that the problem of

complete integrability in the first case is solved iff the only imbedding mapping π :
Mn
h → Rn ⊂ T ∗(Rn) is constructed. This case was considered in detail in [6] where

the corresponding Picard-Fuchs type equations were built based on an extension of the
Galisot-Reeb and Francoise results [4, 5]. Namely, similar to (4), these equations are
defined as follows:

∂wj(µj ;h)/∂hk = Pkj(µj , wj ;h), (16)

where Pkj : T
∗(⊗nj=1S1j ) ×Cn → C, k, j = 1, n, are some algebraic functions of their

arguments.
In the second case where the integral submanifold Mn

h ⊂ T ∗(Rn) cannot be imbed-
ded almost everywhere into the base space Rn ⊂ T ∗(Rn), the relationship like (14)
does not take place, and we are forced to consider the usual canonical transforma-
tion from T ∗(Rn) to T ∗(Rn) based on a mapping dLq : ⊗nj=1S1j → T ∗(Rn), where

Lq : ⊗nj=1S1j → R enjoys for all µ ∈ ⊗nj=1S1j Mn
h 6 q the following relationship :

pr∗α(1)(q; p) =
Sn
j=1wj dµj + dLq(µ). In this case we can derive for any µ ∈ ⊗nj=1S1j

the hereditary generating function Lµ : Rn → T ∗(⊗nj=1S1j) introduced before as
n[
j=1

wj(µj ;h) dµj +
n[
j=1

tjdhj + dLµ = dLq|q=q(µ;h) , (17)

satisfying evidently the following canonical transformation condition:

dSq(µ;h)(h) =
n[
j=1

wj(µj ;h) dµj +
n[
j=1

tjdhj + dLµ(h), (18)

for almost all µ ∈ ⊗nj=1S1j and h ∈ Rn. Based on (18) and (17) one can derive the
following relationships:

∂Lµ(h)/∂hj = kp, ∂q/∂hjl|Mn
h

(19)

for all j = 1, 2, µ ∈ ⊗nj=1S1j and h ∈ Rn. Whence the following important analytical
results

ts =
Sn
j=1

U µj
µ
(0)
j

(∂wj(λ;h)/∂hs)dλ,Sn
j=1 pj(µ;h)(∂qj/∂µs) = ws + ∂Lµ(h)/∂µs,

(20)

hold for all s = 1, 2 and µ, µ(0) ∈ ⊗nj=1S1j with parameters h ∈ Rn being fixed. Thereby
we have found a natural generalization of the relationships for p-variables subject to
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the extended integral submanifold imbedding mapping πh :M
n
h → T ∗(Rn) in the form

(12).
Assume now the functions wj : C×Cn→C, j = 1, n, satisfy the Picard-Fuchs

equations (16) and also the following [3, 5] algebraic conditions:

w
nj
j +

nj−1[
k=0

cj,k(λ;h)w
k
j = 0, (21)

where cj,k : C×Cn→C , k = 0, nj − 1, j = 1, n, are some polynomials in λ ∈ C. In view
of the Riemann theorem [7, 8], each algebraic curve of (21) is known to be topologically

equivalent to some Riemannian surface Γ
(j)
h of genus gj ∈ Z+, j = 1, n. Thereby, one

can realize the local diffeomorphism ρ : Mn
h → ⊗nj=1Γ(j)h , by mapping the homology

group basis cycles σ
(h)
j ⊂Mn

h , j = 1, n, into the homology subgroup H1(⊗nj=1Γ(j)h ;Z)
basis cycles σj(Γh) ⊂ Γ(j)h , j = 1, n, satisfying the following relationships: ρ( σ(h)j ) =Sn
k=1 njk σk(Γh), where njk ∈ Z, k = 1, j and j = 1, n, are some fixed integers. Based

now on (17) one can write down, for instance, action-variables expressions as follows:

γi =
1

2π

n[
j=1

nij

L
σj(Γh)

wj(λ;h)dλ, (22)

where i = 1, n. Subject to the evolution on Mn
h ⊂ T ∗(Rn) one can easily obtain from

(19) that

dti =
n[
j=1

(∂wj(µj ;h)/∂hi)dµj (23)

at dhi = 0 for all i = 1, n, giving rise to a global τ -parametrization of the set of

circles ⊗nj=1S1j ⊂ ⊗nj=1Γ(j)h . That is, one can define some inverse algebraic functions to
Abelian type integrals (22) as µ = µ(τ ;h), where as before, τ = (t1, t2, ..., tn) ∈ Rn is
a vector of evolution parameters. Recall now the expressions (12) for the integral sub-
manifold mapping πh :M

n
h → T ∗(Rn), one can at last write down the “quadratures”

mappings for the evolutions onMn
h ⊂ T ∗(Rn) as follows: q = q(µ(τ ;h)) = q̃(τ ;h), p =

p(µ(τ ;h)) = p̃(τ ;h), where obviously, a vector (q̃, p̃) ∈ T ∗(Rn) is quasiperiodic in each
variable ti ∈ τ, i = 1, n.

THEOREM 1. Every completely integrable Hamiltonian system admitting an alge-
braic submanifold Mn

h ⊂ T ∗(Rn) possesses a separable canonical transformation (18)
which is described by differential algebraic Picard-Fuchs type equations whose solutions
are algebraic curves (21).

Therefore, the main ingredient of the scheme of integrability by quadratures is
finding the Picard-Fuchs type equations (16) corresponding to the integral submanifold
imbedding mapping (12) which depends in general on Rn 6 h-parameters, and then
integrating them to curves (21) carrying separable variables.
Similar to the differential-geometric approach developed in [6], one can find 1-forms

h
(1)
j ∈ Λ1(T ∗(Rn)), j = 1, n, enjoying the following identity on T ∗(Rn) : ω(2)(q, p) :=
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Sn
j=1 dpj∧dqj =

Sn
j=1 dHj∧h(1)j . The 1-forms h(1)j ∈ Λ1(T ∗(Rn)), j = 1, n, possess the

following important properties when they are pulled back to the integral submanifold

(1): π∗hh
(1)
j := h̄

(1)
j = dtj , where h̄

(1)
j ∈ Λ1(Mn

h ), and πh∗d/dtj = Kj · πh for all
j = 1, n. The above expressions combined with (23) give rise easily to the following set
of relationships

h̄
(1)
j =

n[
j=1

(∂wj(µj ;h)/∂hi)dµj (24)

at dhj = 0 on Mn
h ⊗nj=1S1j ⊂ ⊗nj=1Γ(j)h for all j = 1, n. Since we are interested

in the integral submanifold imbedding mapping (12) being locally diffeomorphic in a
neighborhood U(Mn

h ) ⊂ T ∗(Rn), the Jacobian det ||∂q(µ;h)/∂µ|| 9= 0 almost every

where in U(Mn
h ). On the other hand, as was proved in [4], the set of 1-forms h̄

(1)
j ∈

Λ1(Mn
h ), j = 1, n, can be represented in U(M

n
h ) as

h̄
(1)
j =

n[
k=1

h̄
(1)
jk (q, p)dqk

���
Mn

h

, (25)

where h̄
(1)
jk : T

∗(Rn) → R, k, j = 1, n, are some algebraic expressions of their argu-
ments. Thereby, one easily finds from (25) and (24) that

∂wi(µi;h)/∂hj =
n[
k=1

h̄
(1)
jk (q(µ;h), p(µ;h))(∂qk(µ;h)/∂µi) (26)

for all i, j = 1, n. Subject to the p-variables in (26) we must, in view of (20), use the
expressions Sn

j=1 pj(µ;h)(∂qj/∂µs) = ws + ∂Lµ(h)/∂µs,
∂Lµ(h)/∂hj = kp, ∂q/∂hjl|Mn

h
,

(27)

being true for s = 1, n and all µ ∈ ⊗nj=1Sj , h ∈ Rn in the neighborhood U(Mn
h ) ⊂

T ∗(Rn) chosen before. Thereby, we arrive at the following

∂wi(µi;h)/∂hj = P̄ji(µ,w;h), (28)

where the expressions P̄ji(µ,w;h) :=
Sn
k=1 h̄

(1)
jk (q(µ;h), p(µ;h))∂qk/∂µi), i, j = 1, n,

depend only on Γ
(i)
h 6 (µi, wi)-variables for each i ∈ {1, n} and all j = 1, n. This

condition can be written down as follows:

∂P̄ji(µ,w;h)/∂µk = 0, (29)

for j, i 9= k ∈ {1, n} at almost all µ ∈ ⊗nj=1S1j .
THEOREM 2. Let there be given a completely integrable Hamiltonian system on

the coadjoint manifold T ∗(Rn) whose integral submanifold Mn
h ⊂ T ∗(Rn) is described

by the Picard-Fuchs type algebraic equations (28). The corresponding imbedding map-
ping πh : M

n
h → T ∗(Rn) defined in (12) is a solution of a compatibility condition
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subject to the differential-algebraic relationships (29) on the canonical transformations
generating function (17).

To show that the scheme described above really leads to an algorithmic procedure
for constructing the Picard-Fuchs type equations (28) and the corresponding integral
submanifold imbedding mapping πh : M

n
h → T ∗(Rn) in the form (12), we apply it to

a so called truncated Focker-Plank Hamiltonian system on the canonically symplectic
cotangent space T ∗(Rn).
Consider the following dynamical system on the canonically symplectic phase space

T ∗(R2) :

dq1/dt = p1 + α(q1 + p2)(q2 + p1),
dq2/dt = p2,
dp1/dt = −(q1 + p2)− α[q2p1 + 1/2(p

2
1 + p

2
2 + q

2
2)],

dp2/dt = −(q2 + p1),

 = K1(q, p), (30)

where K1 : T
∗(R2)→ T (T ∗(R2)) is the corresponding vector field on T ∗(R2) 6 (q, p),

and t ∈ R is an evolution parameter, called a truncated four-dimensional Focker-Plank
flow. It is easy to verify that the functions Hj : T

∗(R2)→ R, j = 1, 2, where

H1 = 1/2(p
2
1 + p

2
2 + q

2
1) + q1p2 + α(q1 + p2)[q2p1 + 1/2(p

2
1 + p

2
2 + q

2
2)],

H2 = 1/2(p
2
1 + p

2
2 + q

2
2) + q2p1,

(31)

are functionally independent invariants with respect to the flow (30). Moreover, the
invariant (31) is the Hamiltonian function for (30), that is, the relationship iK1

ω(2) =
−dH1 holds on T ∗(R2), where the symplectic structure ω(2) ∈ Λ2(T ∗(R2)) is given as

follows: ω(2) := d(pr∗α(1)) =
S2
j=1 dpj ∧ dqj , with α(1) ∈ Λ1(R2) to be the canonical

Liouville form on R2 : α(1)(q; p) =
S2
j=1 pjdqj for any (q, p) ∈ T ∗(R2) * Λ1(R2).

The invariants (31) commute with each other subject to the associated Poisson
bracket on T ∗(R2) : {H1,H2} = 0. Thereby, in view of the abelian Liouville-Arnold
theorem [1, 2], the dynamical system (30) is completely integrable by quadratures on
T ∗(R2), and we can apply our scheme to the commuting invariants (31) subject to the

symplectic structure ω(2) ∈ Λ2(R2). One easily states that ω(2) =
S2

i=1 dHi ∧ h(1)i ,
where the corresponding 1-forms π∗hh

(1)
i := h̄

(1)
i ∈ Λ1(M2

h), i = 1, 2, are given as

h̄
(1)
1 = p2dq1−(p1+q2)dq2

p1p2−(p1+q2)(q1+p2)−αh2(p1+q2) ,

h̄
(1)
2 = −[(q1+p2)(1+αp2)+αh2]dq1+(p1+α[h2+(q2+p1)( q1+p2)])dq2p1p2−(q2+p1)(αh2+q1+p2) ,

(32)

and an invariant submanifold M2
h ⊂ T ∗(R2) is defined as

M2
h :=

�
(q, p) ∈ T ∗(R2) : Hi(q, p) = hi ∈ R,i = 1, 2

�
for some parameters h ∈ R2. Based now on expressions (32) and (18), we can easily
construct functions P̄ij(w;h), i, j = 1, 2, in (28), defined on T ∗(M2

h) * T ∗(⊗2j=1S1j)
subject to the integral submanifold imbedding mapping πh : M

2
h → T ∗(R2) in coor-

dinates µ ∈ ⊗2j=1S1j ⊂ ⊗2j=1Γ(j)h , which we will not write down in detail due to their
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cumbersome form. Having applied then the criterion (29), we arrive at the following
compatibility relationships subject to the mappings q : (⊗2j=1S1j) × R2 → R2 and

p : (⊗2j=1S1j)×R2 → T ∗q (R2) :

∂q1/∂µ1 − ∂q2/∂µ2 = 0,
w1∂Lµ/∂w1 − w2∂Lµ/∂w2 = 0,
∂2q1/∂µ2∂h2 + ∂2w2/∂µ2∂h2 = 0,
w1∂w1/∂h1 − w2∂w2/∂h2 = 0,
∂w1/∂h1(∂q1/∂h1) = ∂w2/∂h1(∂q2/∂h1),
∂(w1∂w1/∂h2)/∂h2 − α2∂q1/∂µ1 = 0,

(33)

and so on, subject to variables µ ∈ ⊗2j=1S1j and h ∈ R2. Solving all equations like (33),
one can find right away that the expressions

p1 = w1, p2 = w2, q1 = c1 + µ1 − w2(µ2;h),
q2 = c2 + µ2 − w1(µ1;h), Lµ(h) = −w1w2, (34)

where cj(h1, h2) ∈ R1, j = 1, 2, are constant, hold on T ∗(M2
h), giving rise to the

following Picard-Fuchs type equations in the form (28):

∂w1(µ1;h)/∂h1 = 1/w1,
∂w1(µ1;h)/∂h2 = α2h2/w1,
∂w2(µ2;h)/∂h1 = 0,
∂w2(µ2;h)/∂h2 = 1/w2.

(35)

The Picard-Fuchs equations (35) can be easily integrated by quadratures as follows:

w21 + k1(µ1)− α2h2 − 2h1 = 0, w22 + k2(µ2)− 2h2 = 0, (36)

where kj : S
1
j → C, j = 1, 2, are still unknown functions. To determine these functions,

it is necessary to substitute (34) into expressions (31), and make use of (36) to reach
the following results: k1 = µ

2
1, k2 = µ

2
2 under the condition that c1 = −αh2, c2 = 0.

Thereby, we have constructed the corresponding algebraic curves Γ
(j)
h , j = 1, 2, in the

form (21):

Γ
(1)
h := {(λ, w1) : w21+λ2−α2h22−2h1) = 0}, Γ(2)h := {(λ, w2) : w22+λ2−2h2 = 0}, (37)

where (λ, wj) ∈ C×C, j = 1, 2, and h ∈ R2 are arbitrary parameters. Making use now
expressions (37) and (34), we can construct in explicit form the integral submanifold
imbedding mapping πh :M

2
h → T ∗(R2) for the flow (30):

q1 = µ1 −
s
2h2 − µ22 − αh22, p1 = w1(µ1;h),

q2 = µ2 −
s
2h1 − α2h22 − µ21, p2 = w2(µ2;h),

(38)

where (µ,w) ∈ ⊗2j=1Γ(j)h . As was mentioned before, the formulas in (38) together
with the explicit expressions (20) make it possible right away to find solutions to the
truncated Focker-Plank flow (30) by quadratures, thereby completing its integrability.
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