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Abstract

We introduce a local modulus of continuity as a measure of pointwise summa-
bility by Abel and (C,2) means. The (C,1) summability is also considered.

1 Introduction

Let LP (C) be the class of all 2r—periodic real functions integrable in the Lebesgue sense
with p—th power (respectively continuous functions) over @ = [—m,7]. Let X = X?
where X? = LP when 1 < p < oo or XP = C when p = co. Let us define the norm of
f € XP as

1/p
Ul = Ol = 4 (L, 7@ P de) " 1<p <o
Swreq | f@)| p=oc

Let

Sf(x):= aoéf) + Z(ak(f) coskx + by (f) sinkz) := ZC’kf(x)
k=1 k=0

and let Sif, on f and A, f be the partial sum, the (C,a) mean and the Abel mean of
the trigonometric Fourier series Sf respectively. Thus

olf = S,f,n=0,1,2, ..,

1 n
o) = e 2 ANAC a> —1n =012 ..
" k=0

o k+ «a
k::Cl]chra:( k )
and

Arf:ir’“()kﬁ re(0,1).

k=0
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144 Pointwise Summability

The pointwise characteristic

1 h 1/p
Wy fp(8) = sup {E A ‘Pr(t)|pdt} )

where
eo(t) = f(x+t)+ f(z—1t) =2f (2),
was used as a measure of approximation by Aljanci¢ et al. [1]. This characteristic was

very often used, but it appears that such approximation cannot be comparable with
the norm approximation when X # C. In [5] we introduced the modified quantity

1 Fy 1/p
we f, () :—{5 / |%<t>|pdt} .

In view of the monotonicity of the product dw, f1(6) with respect to 8, by the methods
in [5], we may easily obtain the following estimation

Based on the points of differentiability of the indefinite integral of f (D-points), the

quantity
1 h
0
is considered in [7].
Here we introduce yet another modified quantity

1 h/
5 /0 Px (t) dt

IO e,

el )= e

We can observe that for p € [1, 00),

Wy fp (8) S Wafp (6) < wfc (6),
and
w f(6) S, f(6) Swfc (6),

and also, for p € [p, o], by the Minkowski inequality,
[w? FO) ~ < lw fp(O)ll ~ <wf ~(8),
XPp ped

where wfx is the modulus of continuity of f in the space X = XP defined by the
formula

wfx (8) == sup [[f(-+h) = f()lx -

0<|h|<6
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It is well-known (see [2,3,4]) that the (C, 1) means do not tend to f at the D-points
of f but the Abel means as well the (C,2) means do. In this paper these facts will be
presented in the approximation version with the quantity w}f as a measure of such
approximation (cf. [6]).

By K we shall designate either an absolute constant or a constant depending on
the indicated parameters, not necessarily the same in each occurrence.

2 Results

We start with two theorems for pointwise approximation.
THEOREM 1. If f € L', then

I -, m
o f (2) = f ()] <Kn+1k2_ow"”f<k+1)’

for all real x and every positive integer n.
THEOREM 2. If f € L', then

A f (@)~ f(a)] < K (w;;fm (=) +(1-7) /

™ * t
0,
t2
-r
for all real = and every r € (0,1).
Now using the Minkowski inequality, we can derive from these theorems a corollary.

COROLLARY 1. If f € X = X? (p € [1,0]), then

9 I < 0
||‘7nf - fHX < Kn——i—l I;)fo </€—+1>

and

AT~ fllx <K ((1 ~nefx @+ - [ 20 dt)

for every integer n and r € (0, 1) respectively.
From our theorems the results of Fatou [3] and Lebesgue [4] also follow.
COROLLARY 2. If f € L and x is a D-point of f, then o2 f (z) — f (z) = 0, (1) as
n—ooand A.f (z) — f(z) =0, (1) asr — 1.
To prove Theorem 1, let us observe that
2 ST L " -
@@= DA @ - @) =g | e

v=0

N 2
)
sm§t

174

Putting
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and integrating by parts we obtain

Uﬁf(x)—f(fv)Z%A%{[/Otcpz(u)dan(t)L—/OW (/Otmmdu) %Gn@)dt}.

An easy computation yields

"\ ,v+1l, 2n43  sin 23

E sin t= — T
2 4 4sin =t

v=0 2

and therefore

2n+3  sin 2%E3¢

G, () = — ,
(1) 4sin2%t 4sin3%t
whence
G, (x) = n+3 (-1
] 4
Thus

ot (@) = f ()]
2n+3+(—1)"w* i 1 [T " d
st Ty (/o +/L>t /) dtG"(t)’dt'

n+1

Let 51,53 and S3 denote respectively the first, second and the third sum in the right
hand side of the above inequality. Immediately we have

1 1 - T
< —w < * .

Differentiating G,, we obtain

dG () = — (2n + 3) cos 3t — 23 cos 23¢ N 3cos £t sin 25E3¢
" 4sin3it 8sin4it ’
whence
d 4502n+3) _ 9r?n+1
EGn(t)’<4$TJ%t<T t3 70<|t‘§7r7
and

k n v k
L6.=1 (zzz (% +Zcos,u>> =23 psint,

v=0 k=0 v=0 k=0 p=1
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Thus, for all ¢,
d n v k
EGn (t)‘ < 2ZZZM2Sint <2nSsint <2(n+1)°t.
v=0 k=0 p=1
These imply

1 us s 5 = T
So < ——— wyf | ——=)2(n+1 / tdt < 2mw? ( ),
Tamr1intl f(ﬂ“) (r+1) 0 - Ul e

92 ™ 1. 9 1 [T wif(t
S5 < %/ twr f ) g = 2T / wel ) gy
4r(n+1)° J = t3 4 n+1 t2

CE T
Finally, by the monotonicity of tw? f(t),

and

i i T dr [T . dr [T wif(t)
* — * t3dt < Lo dt
and
T *£(t 1 [l 1 k+1 h
/ w;z;t];( )dt _ _/ w;f(ﬁ)du I Z/ u  sup / Oz (ﬁ) dt| du
# ™ J1 u 71' b—1 k 0<h<w/u|JO
1 n h
< - k+1) sup / g (t)dt
71'2::1( )O<h§7r/k 0 x( )
n T n T
< 2 =) <2 f(——).
s 2 wil(p)s ;)wwf(kH)

These estimates imply our result with constant K = 1 + 1673 + 97/2. The proof is
complete.

Next, we prove Theorem 2. First of all, it is clear that

Af@)=f@=1 [ e P
where ) )
—-Tr
Pt =570 D
and

1
A(rt)=1—2rcost+72=(1—1)* + 4rsin2§t.
Integration by parts gives

Arf (x) = f (2)

{% /Ot @ (u) duP (r, t)]t—o - %/Oﬂ (/Ot o (u) du) %P(r, t)dt
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Hence,

1— r2) sint

(- ruzstn) + 2 [ o

g ([ [ Josor et

= (=nwif(m)+ L+

[Arf () = f ()]

IN

Using the estimate A (r,¢) > (1 —r)? we can see that

1 . _’r’f'(lfTQ)(lf’l") L=r gw* .
B 0w T e [ s S ),

By the estimate A (r,t) > 25¢* we obtain
L O o (e LI T owsf(t)
12 S ; /177, twwf(t)wdt = — (1 — T) /7 dt.

Finally, because tw? f1(¢) is a non-decreasing function of ¢,

2

« Vi -1 * 2 4 _3 71'2—1 &
)< —— — — < -
wif(—r) < T Ruifa - (- ) /Ht i< T r)/H

which completes our proof.
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