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Abstract

We introduce a local modulus of continuity as a measure of pointwise summa-
bility by Abel and (C,2) means. The (C,1) summability is also considered.

1 Introduction

Let Lp (C) be the class of all 2π—periodic real functions integrable in the Lebesgue sense
with p—th power (respectively continuous functions) over Q = [−π,π]. Let X = Xp

where Xp = Lp when 1 ≤ p <∞ or Xp = C when p =∞. Let us define the norm of
f ∈ Xp as

nfn
Xp := nf(·)nXp =


�U

Q

| f(x) |p dx
�1/p

1 ≤ p <∞
supx∈Q | f(x) | p =∞

.

Let

Sf(x) :=
a0(f)

2
+
∞[
k=1

(ak(f) cos kx+ bk(f) sin kx) :=
∞[
k=0

Ckf(x)

and let Skf, σ
α
k f and Arf be the partial sum, the (C,α) mean and the Abel mean of

the trigonometric Fourier series Sf respectively. Thus

σ0nf = Snf, n = 0, 1, 2, ...,

σαnf =
1

Aα
n

n[
k=0

Aα
n−kCkf, α > −1, n = 0, 1, 2, ...,

Aα
k = C

k
k+α =

�
k + α
k

�
and

Arf =
∞[
k=0

rkCkf, r ∈ (0, 1) .
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144 Pointwise Summability

The pointwise characteristic

wxfp(δ) = sup
0<h≤δ

+
1

h

] h

0

|ϕx (t)|p dt
,1/p

,

where
ϕx (t) = f (x+ t) + f (x− t)− 2f (x) ,

was used as a measure of approximation by Aljančič et al. [1]. This characteristic was
very often used, but it appears that such approximation cannot be comparable with
the norm approximation when X 9= C. In [5] we introduced the modified quantity

wxfp(δ) :=

+
1

δ

] δ

0

|ϕx (t)|p dt
,1/p

.

In view of the monotonicity of the product δwxf1(δ) with respect to δ, by the methods
in [5], we may easily obtain the following estimation

��σ1nf (x)− f (x)�� ≤ 3/2

n+ 1

n[
k=0

wxf1

�
π

k + 1

�
, n = 0, 1, 2, ... .

Based on the points of differentiability of the indefinite integral of f (D-points), the
quantity

w∗xf(δ) := sup
0<h≤δ

����� 1h
] h

0

ϕx (t) dt

�����
is considered in [7].
Here we introduce yet another modified quantity

w∗xf(δ) := sup
0<h≤δ

�����1δ
] h

0

ϕx (t) dt

����� .
We can observe that for p ∈ [1,∞),

wxfp (δ) ≤ wxfp (δ) ≤ ωfC (δ) ,

and

w∗xf(δ) ≤ w∗xf(δ) ≤ ωfC (δ) ,

and also, for hp ∈ [p,∞], by the Minkowski inequality,
nw∗· f(δ)n

Xhp ≤ nw·fp(δ)nXhp ≤ ωf
Xhp (δ) ,

where ωfX is the modulus of continuity of f in the space X = Xhp defined by the
formula

ωfX (δ) := sup
0<|h|≤δ

nf(·+ h)− f(·)nX .
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It is well-known (see [2,3,4]) that the (C, 1) means do not tend to f at the D-points
of f but the Abel means as well the (C, 2) means do. In this paper these facts will be
presented in the approximation version with the quantity w∗xf as a measure of such
approximation (cf. [6]).
By K we shall designate either an absolute constant or a constant depending on

the indicated parameters, not necessarily the same in each occurrence.

2 Results

We start with two theorems for pointwise approximation.

THEOREM 1. If f ∈ L1, then��σ2nf (x)− f (x)�� ≤ K 1

n+ 1

n[
k=0

w∗xf
�

π

k + 1

�
,

for all real x and every positive integer n.

THEOREM 2. If f ∈ L1, then

|Arf (x)− f (x)| ≤ K
�
w∗xf(π) (1− r) + (1− r)

] π

1−r

w∗xf(t)
t2

dt

�
for all real x and every r ∈ (0, 1).
Now using the Minkowski inequality, we can derive from these theorems a corollary.

COROLLARY 1. If f ∈ X = Xp (p ∈ [1,∞]), then��σ2nf − f��X ≤ K 1

n+ 1

n[
k=0

ωfX

�
π

k + 1

�
and

nArf − fnX ≤ K
�
(1− r)ωfX (π) + (1− r)

] π

1−r

ωfX (t)

t2
dt

�
for every integer n and r ∈ (0, 1) respectively.
From our theorems the results of Fatou [3] and Lebesgue [4] also follow.

COROLLARY 2. If f ∈ L and x is a D-point of f , then σ2nf (x)− f (x) = ox (1) as
n→∞ and Arf (x)− f (x) = ox (1) as r→ 1−.
To prove Theorem 1, let us observe that

σ2nf (x)− f (x) =
1

A2n

n[
ν=0

A1ν
�
σ1νf (x)− f (x)

�
=

1

2πA2n

] π

0

ϕx (t)
n[

ν=0

�
sin ν+1

2 t

sin 12 t

�2
dt.

Putting

Gn (0) =
n[

ν=0

(ν + 1)2

Gn (t) =
n[

ν=0

�
sin ν+1

2 t

sin 12 t

�2
, t 9= 0,
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and integrating by parts we obtain

σ2nf (x)− f (x) =
1

2πA2n

+�] t

0

ϕx (u) duGn (t)

�π
0

−
] π

0

�] t

0

ϕx (u) du

�
d

dt
Gn (t) dt

,
.

An easy computation yields

n[
ν=0

sin2
ν + 1

2
t =

2n+ 3

4
− sin

2n+3
2 t

4 sin 12 t
,

and therefore

Gn (t) =
2n+ 3

4 sin 2 12 t
− sin

2n+3
2 t

4 sin 3 12 t
,

whence

Gn (π) =
2n+ 3

4
− (−1)

n+1

4
.

Thus ��σ2nf (x)− f (x)��
≤ 2n+ 3 + (−1)n

4 (n+ 1)
2 w∗xf(π) +

1

π (n+ 1)
2

#] π
n+1

0

+

] π

π
n+1

$
tw∗xf(t)

���� ddtGn (t)
���� dt.

Let S1, S2 and S3 denote respectively the first, second and the third sum in the right
hand side of the above inequality. Immediately we have

S1 ≤ 1

n+ 1
w∗xf(π) ≤

1

n+ 1

n[
k=0

w∗xf
�

π

k + 1

�
.

Differentiating Gn we obtain

d

dt
Gn (t) =

− (2n+ 3) cos 12 t− 2n+3
2 cos 2n+32 t

4 sin 3 12 t
+
3cos 12 t sin

2n+3
2 t

8 sin 4 12 t
,

whence ���� ddtGn (t)
���� ≤ 4.5 (2n+ 3)4 sin 3 12 t

≤ 9π
2

4

n+ 1

t3
, 0 < |t| ≤ π,

and

d

dt
Gn (t) =

d

dt

#
2

n[
ν=0

ν[
k=0

#
1

2
+

k[
µ=1

cosµt

$$
= −2

n[
ν=0

ν[
k=0

k[
µ=1

µ sinµt,
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Thus, for all t,���� ddtGn (t)
���� ≤ 2 n[

ν=0

ν[
k=0

k[
µ=1

µ2 sin t ≤ 2n5 sin t ≤ 2 (n+ 1)5 t.

These imply

S2 ≤ 1

π (n+ 1)
2

π

n+ 1
w∗xf

�
π

n+ 1

�
2 (n+ 1)5

] π
n+1

0

tdt ≤ 2π2w∗xf
�

π

n+ 1

�
,

and

S3 ≤ 9π2

4π (n+ 1)
2

] π

π
n+1

tw∗xf(t)
n+ 1

t3
dt =

9π

4

1

n+ 1

] π

π
n+1

w∗xf(t)
t2

dt.

Finally, by the monotonicity of tw∗xf(t),

w∗xf(
π

n+ 1
) =

π

n+ 1
w∗xf(

π

n+ 1
)
4π

n+ 1

] π

π
n+1

t−3dt ≤ 4π

n+ 1

] π

π
n+1

w∗xf(t)
t2

dt

and] π

π
n+1

w∗xf(t)
t2

dt =
1

π

] n+1

1

w∗xf(
π

u
)du =

1

π

n[
k=1

] k+1

k

u sup
0<h≤π/u

�����
] h

0

ϕx (t) dt

����� du
≤ 1

π

n[
k=1

(k + 1) sup
0<h≤π/k

�����
] h

0

ϕx (t) dt

�����
≤ 2

n[
k=1

w∗xf(
π

k
) ≤ 2

n[
k=0

w∗xf(
π

k + 1
).

These estimates imply our result with constant K = 1 + 16π3 + 9π/2. The proof is
complete.

Next, we prove Theorem 2. First of all, it is clear that

Arf (x)− f (x) = 1

π

] π

0

ϕx (t)P (r, t) dt,

where

P (r, t) =
1− r2
2∆ (r, t)

and

∆ (r, t) = 1− 2r cos t+ r2 = (1− r)2 + 4r sin 2 1
2
t.

Integration by parts gives

Arf (x)− f (x)

=

�
1

π

] t

0

ϕx (u) duP (r, t)

�π
t=0

− 1
π

] π

0

�] t

0

ϕx (u) du

�
∂

∂t
P (r, t) dt

=
1− r
2 (1 + r)

1

π

] π

0

ϕx (u) du+
1

π

] π

0

�] t

0

ϕx (u) du

�
r
�
1− r2� sin t
∆2 (r, t)

dt.
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Hence,

|Arf (x)− f (x)| ≤ (1− r)w∗xf(π) +
1

π

] π

0

tw∗xf(t)
r
�
1− r2� sin t
∆2 (r, t)

dt

= (1− r)w∗xf(π) +
1

π

�] 1−r

0

+

] π

1−r

�
tw∗xf(t)

r
�
1− r2� sin t
∆2 (r, t)

dt

= (1− r)w∗xf(π) + I1 + I2.

Using the estimate ∆ (r, t) ≥ (1− r)2 we can see that

I1 ≤ 1

π
(1− r)w∗xf(1− r)

r
�
1− r2� (1− r)
(1− r)4

] 1−r

0

dt ≤ 2

π
w∗xf(1− r).

By the estimate ∆ (r, t) ≥ 4r
π2 t

2 we obtain

I2 ≤ 1

π

] π

1−r
tw∗xf(t)

r
�
1− r2� t
16r2

π4 t
4

dt =
π3

8r
(1− r)

] π

1−r

w∗xf(t)
t2

dt.

Finally, because tw∗xf1(t) is a non-decreasing function of t,

w∗xf(1− r) ≤
π2 − 1
2π2

w∗xf(1− r) (1− r)2
] π

1−r
t−3dt ≤ π2 − 1

2π2
(1− r)

] π

1−r

w∗xf(t)
t2

dt,

which completes our proof.
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