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Abstract

In this paper a fixed point theorem due to Schaefer is used to investigate the
existence of solutions for first order nonresonance impulsive functional differential
equations in Banach spaces with periodic boundary conditions.

1 Introduction

This paper is concerned with the existence of solutions for the nonresonance boundary
value problem for functional differential equations with impulsive effects

y' () —My(t) = ft,y), teJ=[0,T), t #tg, k=1,...,m, (1)
AYli=t, = In(y(ty ), k=1,...,m, (2)
y(t) = y(0), t € Jo, My(0) — Ny(T) =0, (3)
where A € R, f : J x C(Jo,E) — FE is a given function, Jy = [-r,0], 0 < r

A

00, 0=ty <t1 <...<ty <tmy1 =T, I1,... I, € C(E,E) are bounded, Ay,
y(th) — y(ty), y(ty) and y(t]) represent the left and right limits of y(t) at t = ¢,
respectively, F a real Banach space with norm |- |, and M and N are constant. Note
that if M = N = 1, then (3) represents periodic boundary conditions. For notational
purposes, let t_1 = —r.

For any continuous function y defined on [—r,T| — {t1,...,tn} and any t € J, we
denote by y: the element of C'(Jp, E) defined by

ye(0) =yt +6), 6y

Here y,(-) represents the history of the state from time ¢ — 7, up to the present time ¢.

Impulsive differential equations have become more important in recent years in
some mathematical models of real world phenomena, especially in the biological or
medical domain see; the monographs of Bainov and Simeonov [2], Lakshmikantham,
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Bainov and Simeonov [10], and Samoilenko and Perestyuk [13], and the papers of Agur
et al. [1], Goldbeter et al. [6].

Recently an extension to functional differential equations with impulsive effects has
been done in [17] by using the coincidence degree theory. For other results on functional
differential equations we refer the interested reader to the monograph of Erbe, Kong
and Zhang [5], Hale [7], Henderson [8], and the survey paper of Ntouyas [12].

The fundamental tools used in the existence proofs of all above mentioned works are
essentially fixed point arguments, nonlinear alternative, topological transversality [3],
degree theory [11] or the monotone method combined with upper and lower solutions
(4], [9].

This paper will be divided into three sections. In Section 2 we will recall briefly
some basic definitions and preliminary facts which will be used throughout Section 3.
In Section 3 we shall establish an existence theorem for (1)—(3). We consider the case
when A # 0. Note that when the impulses are absent (i.e. for I, =0, k=1,...,m),
then the problem (1)—(3) is a nonresonance problem since the linear part in equation
(1) is invertible. Our approach is based on a fixed point theorem due to Schaefer [14]
(see also, Smart [15]).

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper. C(Jy, E) is the Banach space of all continuous functions
from Jy into E with the norm

6]l = sup{lp(0)] : —r < 0 < 0}.

By C(J, E) we denote the Banach space of all continuous functions from J into F with
the norm

yll; = sup{ly(t)| : t € J}.

A measurable function y : J — E is Bochner integrable if, and only if, |y| is Lebesgue
integrable. (For properties of the Bochner integral, see for instance, Yosida [16]).
L'(J, E) denotes the Banach space of functions y : J — E which are Bochner integrable
normed by

T
Iyl = / yOldt for all ye L\(J,E).
0

We introduce some notation in order to define the solution of (1)—(3). Suppose
y: [-n,T] — E and each y(t; ) and y(t]) exist, k = 1,...,m. By convention, set
y(t, ) = y(ty) for k =1,..., m. Let y;, denote the restriction of y to J = [t5_1,tx] in the
following sense. If t € (tj—_1,tx], then yi(t) = y(t). If t = t_1, then yy (tx—1) = y(t{ ;).
Define

U={y:[-nT] = E|lyy € C(Jy, E), 0 <k <m+1, and y(t) = y(0), t € Jo}.
¥ is a Banach space with the norm

[yllw = max{{[yx[[s] k= 0,...,m+ 1},
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where || - || denotes the supremum norm on Ji, £k =0,...,m + 1.
‘We shall also consider the set

U'={y:[-nT] = E|yy € WH' (Ji, B), 1 <k <m+1, and y(t) = y(0), t € Jo}
The set ¥! is a Banach space with the norm

[yller = max{{|lyx w1 (g.m| & =1,...,m+1}.

A map f:J x C(Jy, E) — FE is said to be L!-Carathéodory if (i) t — f(t,u) is
measurable for each u € C(Jy, E); (ii) uw —— f(¢,u) is continuous for almost all t € J;
and (iii) for each k > 0, there exists gy € L'(J, Ry) such that |f(t,u)| < gx(t) for
all [Ju|| <k and almost all ¢ € J.

We now define a solution of problem (1)—(3). A function y € ¥ N P! is said to be a
solution of (1)—(3) if y satisfies the equation 3/ (t) — Ay (¢) = f(t, y:) a.e. on J—{t1, ...t}
and the conditions Ayli—s, = It(y(t;)), k=1,...,m, y(t) =y(0) for all t € Jy, and
My(0) — Ny(T) = 0.

Our main result is based on the following:

LEMMA 1 (See also [15], p. 29). Let S be a convex subset of a normed linear space
X and assume 0 € S. Let K : S — S be a completely continuous operator, and let

O(K)={yeS:y=uK(y) for some 0< p<1}.

Then either ®(K) is unbounded or K has a fixed point.

We now consider the following “linear problem” (4), (2), (3), where (4) is the
equation

y'(t) = yt)=gt), t#tg, k=1,...,m, (4)

where g € L'(Ji,E), k = 1,...,m. For short, we shall refer to (4), (2), (3) as
(LP). Note that (LP) is not really a linear problem since the impulsive functions are
not necessarily linear. However, if Iy, k = 1,...,m, are linear, then (LP) is a linear
impulsive problem.

We state and prove the following auxiliary result. Eloe and Henderson [4] have
constructed the analogous Green’s function for the problem (1), (2), (3) in the case
of n-dimensional systems. The proof here gives an alternate development. In the
development we require that IV be a nonzero constant, although the conclusion of the
lemma is valid in the case N = 0.

LEMMA 2. y € ¥! is a solution of (LP), if and only if y € W is a solution of the
following impulsive integral equation

y(t) = { y(j@) teJy (5)
Jo H(t,s)g(s)ds+ 30ty H(t ti) In(y(te)) ted
where Aot
_ Me=Ms—t 0<s<t<T
H(t,s)= (M — Ne/\T) ! { NeATe=As—1) < " ; s < T (6)



68 Impulsive Functional Differential Equations

PROOF. We prove only one of the implications. Suppose that y € ¥! is a solution
of (LP). Then
Y =Xy =g(t), t#t,

i.e.,
(e My(1)) = e NMg(t), t#ty (7)
Assume that ¢ <t < tgy1, k=0,...,m. By integration of (7) we obtain
. tit1
e ity () — e M y(th) = / e Mg(s)ds, i=0,...,k—1.
t;
Adding appropriate terms, we obtain
t
(0 -y O = Y N ie) -t + [ N g)is ®)
0<tp<t 0

Thus,
y(T) = [y(O) + i e M I (y(te)) + /T e‘“g(S)dS} :
k=1 0

Substitute this expression into (3) to obtain

m T
y(0) = (M — Ne/\T)_lNe/\T [Z e_’\t’“fk(y(tk)) —I—/O e_’\sg(s)dsl ) (9)

k=1

Substitute (9) into (8) to obtain

m T
e My(t) = (M —NeT)"INeM [Z e ML (y )+/ e_’\sg(s)ds]
k=1 0

+ > e_/\t’“‘lk(y(tk))—i-/o e M g(s)ds. (10)

0<tr<t
Now employ (10) to obtain

e My(t) = (M —NeT) 1Ne’\T[ Z e M (y Z e eI (y(ty)
0<trp<t t<tp<T

T
+/0 e Mg(s)ds + (M — Ne M) (NerT) ™! Z e e (y(te))

0<tr<t
t
—i—(M—Ne)‘T)(NeAT)_l/ e_Asg(s)ds}
0

= (M—Ne’\T)_lNe’\T{MN_le_’\T Z e eI (y(ty))

0<tp<t

‘ T
+ Y e—/\tk]k(y(tk))—FMN_le_)‘T/ e‘“g(s)ds+/t e‘“g(S)dS}

t<tp<T 0
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Thus

t T
y(t) (M — Ne )1 {M/ e M g(s)ds + N/ e Nt g(5)ds
t

0

+M Z e~ Mtr— tIk tk —I—N Z e tk—t_T)Ik(y(tk)):|

0<tp<t t<tp,<T

/0 H(t, 8)g(s)ds + 3 H(t, i) In(y(t):

k=1

3 Main Result

We are now in a position to state and prove our existence result for the problem (1)—(3).
For the study of this problem we first list the following hypotheses:

(H1) f:Jx C(Jy, E) — E is an L'—Carathéodory map;
(H2) there exist constants ¢; such that |I(y)| < cg, k= 1,...,m for each y € E;
(H3) there exists m € L'(J, R) such that

|f(t,ye)] <m(t) for almost all t € J and all y € ¥;

(H4) for each bounded B C ¥ and ¢t € J the set

{/ H(t,s)f(s,ys ds—|—ZHttk I (y(tg)) yEB}

k=1

is relatively compact in E.

REMARK. (i) If the dimension of FE is finite then (H4) is trivially satisfied. (ii)
Condition (H4) is satisfied if for each ¢ € J the map C(Jy, E) — E : u — f(t,u)
sends bounded sets into relatively compact sets.

THEOREM 1. Assume that hypotheses (H1)-(H4) hold. Then the problem (1)—(3)
has at least one solution on Ji.

PROOQOF. Transform the problem into a fixed point problem. Consider the operator,
K : U — U defined by:

(O) te Jy
Ky)(t
000 = {0 ) e+ 5 H 0B 2
Then clearly from Lemma 2 the fixed points of K are solutions to (1)—(3). We shall

show that K satisfies the assumptions of Lemma 1. The proof will be given in several
steps.
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Step 1: K maps bounded sets into bounded sets in . Indeed, it is enough to show
that there exists a positive constant ¢ such that for each y € By ={y € ¥ : |ly|le < ¢}
one has |[|[Ky||w < ¢. Let y € By, then for each t € J, we have

T m
(K0 = [ Hfpds + 30 HE T 5(00),

k=1

By (H1) we have for each t € J,

T m
(Ky)®)] < / ()15, po)lds + S [t ) | T (y(t)

k=1

T m
< /O [H (1, 5)[1gq(5)|ds + Y [H(t, 1) | sup{|Tk(y)] : Ilyllw < a}-

k=1
Then for each h € K(By) we have

m

T
[hlle < sup [H(E, s)l/ |94($)|ds + > sup [H (¢, ti) [ sup{|Tx (v)| = [ylle < q}
(t,s)eJxJ 0 h—1 t€J

= /(.

Step 2: K maps bounded sets into equicontinuous sets of W. Indeed, let 71,7 €
J, 71 < 1 and By be a bounded set of ¥ as in Step 1. Let y € B,. Then

[(Ky)(72) — (Ky)(11)|

T m
< [ H )~ B s)lla(o)lds + Y 1Hraot) - Him e
0 k=1

As 75 — 71 the right-hand side of the above inequality tends to zero.

Step 3: K : ¥ — U is continuous. Indeed, let {y,} be a sequence such that y,, — y
in W. Then there is an integer ¢ such that ||y,|lv < ¢ foralln =0,1,2,... and ||y|le < g,
so yn € By and y € B,. We have then by the dominated convergence theorem

T
IKyn — Kyllw < iug[/ [H (L, 8)I1.f (5, yns) — [(5,ys)|ds
€ 0

Y H ) [Tk (yn (1)) = T (y ()]
k=1
— 0.

Thus K is continuous.

As a consequence of Steps 1 to 3 and (H4) together with the Arzela-Ascoli theorem
we can conclude that K : ¥ — U is completely continuous.

Step 4: The set

O(K):={yec¥:y=uK(y), forsome 0<pu<1}
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is bounded. Indeed, let y € ®(K). Then y = uK (y) for some 0 < g < 1. Thus for each
tedJ
T m
o) = o [ 905,000+ Y HE T o0
0

k=1
This implies by (H2)-(H3) that for each ¢ € J we have

T m
W) < / (1) (5, 50)lds + 3 [t 1) T (y(00))]

k=1

T m
< swp [H(t)| [ ms)ds+ Y sup|H (b)) e
(t,5)€TXJ 0 o ted

= b,
where b is independent of y. This shows that ®(K) is bounded.

Set X := W. As a consequence of Lemma 1 we deduce that K has a fixed point
which is a solution of (1)—(3). The proof is complete.

Clearly, hypothesis (H3) is a strong hypothesis. Now that the alternative method
due to Schaefer [14] has been established, standard hypotheses to obtain a priori bounds
on solutions can be applied. For example, since H(t,s) < Me*!T for some positive
constant M, if |f(¢t,z)| < g(t)|z| on [0,T] X R, then a standard Gronwall inequality
can be applied to obtain a priori bounds on solutions.
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