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Abstract

We prove an inequality for Hermitian matrices, and thereby extend several
inequalities involving Hadamard products of Hermitian matrices.

Let Cm£ n denote the set of m £ n complex matrices. Let Hm be the set of all
nonsingular Hermitian matrices of order m. For two matrices A and B in Hm, A >
B (¸ B) or B < A (· A) means A ¡ B is positive de¯nite (respectively semide¯nite).
Let ± and ­ indicate respectively the Hadamard and Kronecker products (see e.g.
[3, 6]). For a positive integer n, let hni = f1; ¢¢¢; ng. Let A 2 Cm£ n. For nonempty
index sets ® ½ hmi and ¯ ½ hni, we denote by A(® ; ¯) the submatrix of A lying in
rows ® and columns ¯ . If ® ½ hmi\ hni, then the submatrix A(® ; ® ) is abbreviated by
A(® ). Let ® ½ hmi \ hni, ® 1 = hmi n ® and ® 2 = hni n ® . If A(® ) is nonsingular, then

A=® = A(® 1; ® 2) ¡ A(® 1; ® ) [A(® )]
¡ 1

A(® ; ® 2)

is called the Schur complement of A(® ) in A. We denote by In the n £ n identity
matrix, and by I when the order is clear.

The following result is well known (see for instance [2, Theorem 7.7.9 (a)]).

THEOREM A. Let A; B 2 Hm be positive de¯nite matrices. Then

(A ± B)¡ 1 · A¡ 1 ± B¡ 1: (1)

Wang and Zhang in [9, Theorem 1] and Zhan in [8, Theorem 2] obtained the fol-
lowing extension of Theorem A.

THEOREM B. Let A; B 2 Hm be positive de¯nite matrices. For any positive
integer n and any C; D 2 Cm£ n, we have

(C¤ ± D¤)(A ± B)¡ 1(C ± D) · (C¤A¡ 1C) ± (D¤B¡ 1D): (2)

In particular, if A = B = I, then Theorem B becomes the following result.
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92 Inequalities involving Hadamard Products

THEOREM C ([1]). For any positive integers m; n and any C; D 2 Cm£ n, we have

(C¤ ± D¤)(C ± D) · (C¤C) ± (D¤D): (3)

However, up to now, the equivalent conditions for equalities in (1){(3) to hold are
not known. Furthermore, the following example shows that A > O and B > O is not
necessary for (1) to hold.

EXAMPLE 1. Let A = 1
2

µ
¡ 1 1
1 1

¶
and B = 1

3

µ
1 1
1 ¡ 2

¶
. We have

A¡ 1 ± B¡ 1 ¡ (A ± B)¡ 1 =

µ
10 7
7 5

¶
¸ O:

However, A 6¸ O and B 6¸ O.

Recently, Liu [4, Lemma 2] and Wang et al. [10, Remark 3] obtained the following
extension of Theorem B.

THEOREM D. Let A,B 2 Hm be positive semide¯nite Hermitian matrices. For
any positive integer n and any C; D 2 Cm£ n that satisfy AA+C = C and BB+D = D,
where A+ denotes the Moore{Penrose inverse of A, we have

(C¤ ± D¤)(A ± B)+(C ± D) · (C¤A+C) ± (D¤B+D): (4)

Moreover, Wang et al. [10] showed that

(A ± B)+ · A+ ± B+ (5)

is not true in general.
Motivated by the works of [4], [10] and our Example, in this note, we ¯rst prove

an inequality for nonsingular Hermitian matrices, and then we obtain a condition on
A, B for which inequality (2) holds. Furthermore, necessary and su± cient conditions
under which our inequalities become equalities are presented.

THEOREM 1. Let ® ½ hmi, ® 0 = hmi n ® , ¯ ½ hni and ¯ 0 = hni n ® . If A 2 Hm

and A(® ) > O, then

(C¤AC)(¯ 0) ¸ [C(® 0; ¯ 0)]
¤
[A¡ 1(® 0)]¡ 1C(® 0; ¯ 0) (6)

for all C 2 Cm£ n; and the equality holds in (6) if, and only if,

A(® )C(® ; ¯ 0) + A(® ; ® 0)C(® 0; ¯ 0) = O: (7)

PROOF. It is easy to see that there exist permutation matrices P and R such that

PAPT =

µ
A(® ) A(® ; ® 0)

[A(® ; ® 0)]¤ A(® 0)

¶
;

PCR =

µ
C(® ; ¯) C(® ; ¯ 0)
C(® 0; ¯ ) C(® 0; ¯ 0)

¶
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and

RT (C¤AC)R =

µ
(A¤AC)(¯) (C¤AC)(¯; ¯ 0)

[(C¤AC)(¯; ¯ 0)]¤ (C¤AC)(¯ 0)

¶
: (8)

Let

Q =

µ
I ¡ [A(® )]

¡ 1
A(® ; ® 0)

O I

¶
;

then

Q¤PAPT Q =

µ
A(® ) O

O A=®

¶
(9)

and

Q¡ 1PCR =

µ
¤ X

C(® 0; ¯ ) C(® 0; ¯ 0)

¶
; (10)

where X = C(® ; ¯ 0) + [A(® )]
¡ 1

A(® ; ® 0)C(® 0; ¯ 0) and ¤ denotes a block irrelevant to
our discussions. It follows from [2, p.18] that

A=® =
¡
(A=® )¡ 1

¢¡ 1
= [A¡ 1(® 0)]¡ 1: (11)

Note that RT (C¤AC)R = (Q¡ 1PCR)¤ (Q¤PAPT Q)(Q¡ 1PCR); by (8), (9), (10) and
(11), we then have

(C¤AC)(¯ 0) =
¡

X¤ [C(® 0; ¯ 0)]¤
¢µ

A(® ) O
O A=®

¶ µ
X

C(® 0; ¯ 0)

¶

= X¤A(® )X + [C(® 0; ¯ 0)]
¤
(A=® )C(® 0; ¯ 0)

= X¤A(® )X + [C(® 0; ¯ 0)]
¤
[A¡ 1(® 0)]¡ 1C(® 0; ¯ 0):

This implies that (6) holds and also that equality holds in (6) if, and only if, X¤A(® )X =
O, i.e., X = O, or equivalently, we have (7) (as A(® ) > O). The proof is complete.

We remark that in Theorem 1, if we assume A(® ) < O instead of A(® ) > O, then
(6) becomes

(C¤AC)(¯ 0) · [C(® 0; ¯ 0)]
¤
[A¡ 1(® 0)]¡ 1C(® 0; ¯ 0)

for all C 2 Cm£ n; and equality holds if, and only if, (7) holds.
As a special case, let A 2 Hm be positive de¯nite in Theorem 1. Then by (9), A=®

is positive de¯nite and

Q¡ 1PA¡ 1PT (Q¤)¡ 1 = (Q¤PAPT Q)¡ 1 =

µ
A(® ) O

O A=®

¶ ¡ 1

=

µ
[A(® )]¡ 1 O

O (A=® )¡ 1

¶
;

and hence

PA¡ 1PT

= Q

µ
[A(® )]

¡ 1
O

O (A=® )¡ 1

¶
Q¤

=

µ
A(® )¡ 1 + A(® )¡ 1A(® ; ® 0)(A=® )¡ 1A(® ; ® 0)¤ £

A(® )¡ 1
¤¤ ¤

¤ ¤

¶
(12)
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This implies that

A¡ 1(® ) = A(® )¡ 1 + A(® )¡ 1A(® ; ® 0)(A=® )¡ 1A(® ; ® 0)¤ £
A(® )¡ 1

¤¤ ¸ A(® )¡ 1:

Summarizing, Theorem 1 contains the known result that the inequality A¡ 1(® ) ¸
A(® )¡ 1 holds for any n £ n positive de¯nite matrix A and ® µ hni.

LEMMA 1. Let ° = fj(m + 1) + 1 : j = 0; 1; ¢¢¢; m ¡ 1g and ± = fj(n + 1) + 1 :
j = 0; 1; ¢¢¢; n ¡ 1g. Then A ± B = (A ­ B)(°; ±) for any A; B 2 Cm£ n.

The proof follows by a direct computation and is skipped.

THEOREM 2. Let m, n be given positive integers. Let ° = fj(m + 1) + 1 : j =
0; 1; ¢¢¢; m ¡ 1g and ± = fj(n + 1) + 1 : j = 0; 1; ¢¢¢; n ¡ 1g. Also let °0 = hm2i n °.
Let A; B be m £ m nonsingular Hermitian matrices that satisfy

¡
A¡ 1 ­ B¡ 1

¢
(°0) >

O. Then for any positive integer n and any C; D 2 Cm£ n, the inequality (2) holds.
Furthermore, equality holds in (2) if, and only if,

(A¡ 1 ­ B¡ 1)(° 0)(C ­ D)(° 0; ±) + (A¡ 1 ­ B¡ 1)(°0; °)(C ± D) = O:

PROOF. The fact that (A ­ B)¡ 1 = A¡ 1 ­ B¡ 1 2 Hm2 follows from elementary
properties of the Hadamard product. Replacing ® 0 by °, ¯ 0 by ±, A by (A ­ B)¡ 1 and
C by C ­ D in Theorem 1 respectively, we have that

£
(C ­ D)¤ (A¡ 1 ­ B¡ 1)(C ­ D)

¤
(±)

¸ [(C ­ D)(°; ±)]
¤
[(A ­ B)(°)]

¡ 1
(C ­ D)(°; ±) (13)

and also that equality holds in (13) if, and only if,

(A¡ 1 ­ B¡ 1)(° 0)(C ­ D)(° 0; ±) + (A¡ 1 ­ B¡ 1)(°0; °)(C ­ D)(°; ±) = O: (14)

By elementary properties of the Hadamard product and Lemma 1, we obtain

(A ­ B)(°) = A ± B; (C ­ D)(°; ±) = C ± D (15)

and

£
(C¤ ­ D¤)(A¡ 1 ­ B¡ 1)(C ­ D)

¤
(±)

=
£
(C¤A¡ 1C) ­ (D¤B¡ 1D)

¤
(±)

= (C¤A¡ 1C) ± (D¤B¡ 1D): (16)

Combining (13)-(16), the theorem follows.

COROLLARY 1. Let m, n be positive integers, and let °, ° 0, ± have the same
meanings as in Theorem 2. (i) Let A; B 2 Hm satisfy

¡
A¡ 1 ­ B¡ 1

¢
(°0) > O. Then

the inequality (1) holds. Furthermore, equality holds in (1) if, and only if, (A­ B)(°0)©
(A±B) = PT (A­ B)P for some permutation matrix P . (ii) For any C; D 2 Cm£ n, the
inequality (3) holds. Furthermore, equality holds in (3) if, and only if, (C ­ D)(° 0; ±) =
O.
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PROOF. Let C = D = Im in Theorem 2. Then the inequality (1) holds. Fur-
thermore, equality holds in (1) if, and only if, (A¡ 1 ­ B¡ 1)(°0; °) = O. Noting
A¡ 1 ­ B¡ 1 2 Hm2 , we have (A¡ 1 ­ B¡ 1)(°; °0) = O. Hence

PT (A¡ 1 ­ B¡ 1)P = (A¡ 1 ­ B¡ 1)(°) © (A¡ 1 ­ B¡ 1)(° 0)

for some permutation matrix P . By Lemma 1, we see that (i) holds. And (ii) follows
by choosing M = N = I in Theorem 2. The proof is complete.

We remark that if A > O and B > O, then A and B automatically satisfy the
assumptions of Theorem 2 and Corollary 1(i), and hence Corollary 1(i) and Theorem
2 extend respectively Theorem A and Theorem B. We also recover and complete the
result of Theorem C in Corollary 1(ii).

Consider the matrices A; B in Example 1. Since

(A¡ 1 ­ B¡ 1)(°0) = (A¡ 1 ­ B¡ 1)(2; 3) =

µ
1 1
1 2

¶
;

by Corollary 1(i) we have inequality (1). Furthermore, by Theorem 2, the inequality
(2) also holds, for any positive integer n and any C; D 2 C2£ n. Note, however, that we
cannot apply Theorems A and B to draw the same conclusions, as A 6¸ O and B 6¸ O.

Instead of
¡
A¡ 1 ­ B¡ 1

¢
(°0) > O; if

¡
A¡ 1 ­ B¡ 1

¢
(° 0) < O holds in the hypotheses

of Theorem 2 or Corollary 1, then the inequalities in the conclusions are reversed.
In the literature, many of the inequalities involving Hadamard products are ob-

tained under the assumption that the matrices involved are positive de¯nite (or pos-
itive semide¯nite) (see [4], [5], [8], [9], [10]). In this paper we obtain some of these
inequalities under weaker assumptions. We only require positive de¯niteness of certain
principal submatrix of some nonsingular Hermitian matrix. However, there are still
some other known matrix inequalities involving Hadamard products, such as

(A¡ 1 ± B¡ 1)=® ¸ [(A ± B)=® ]¡ 1

and

(As ± Bs)1=s ¸ (Ar ± Br)1=r

(for nonzero integers s, r, s > r), that are not considered in this paper. These inequal-
ities are known to be valid when the matrices A, B are both positive de¯nite. It would
be of interest to ¯nd out whether they still hold under weaker assumptions.
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