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Abstract

Certain algebraic equations connected with tangential polygons are consid-
ered. Bymeans of their geometrical interpretations, we prove that these equations
are solvable by radicals.

1 Introduction

A polygon with vertices A1; ¢¢¢; An will be denoted by A ´ A1 ¢¢¢An. The lengths of
its sides will be denoted by aj = jAjAj+1j and for the interior angle at vertex Aj we
write

6 Aj = 6 Aj¡ 1AjAj+1; A0 ´ An ; j = 1;n: (1)

We say that A is tangential if there exists a circle CA such that each side of A is
a tangential line of CA. We will assume throughout the article that no two of the
consecutive vertices are the same in A. The centre and the radius of CA will be
denoted by C and r respectively. Also, the integral part of a real number x will be
denoted by [a]:

Consider the angles

¯ j = ¹(6 CAjAj+1); j = 1; n; (2)

where ¹(x) means the \measure of x". Thus, 2¯ j = ¹(6 Aj).

Let A be a tangential n-gon, and let k be a positive integer such that k · [(n ¡ 1)=2].
Then the polygon A will be called k-tangential if any two of its consecutive sides have
only one point in common, and if there holds

¯1 + ¢¢¢+ ¯n = (n ¡ 2k)
¼

2
: (3)

Consequently, a tangential polygon A is k-tangential if
Pn

j=1 'j = 2k¼ , where
'j = ¹(6 AjCAj+1). Indeed, from 2¯j = ¹(6 Aj ) it follows that ¯j + ¯j+1 = ¼ ¡ 'j,
and using (3) twice, our assertion follows.
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It is easy to see that k cannot be greater that (n ¡ 1)=2 for n odd and cannot be
greater than n=2 ¡ 1 when n is even.

If A is k-tangential and if t1; ¢¢¢; tn are the lengths of its tangents, then

tj = r cot ¯j ; j = 1; n: (4)

Let t1; ¢¢¢; tn be any given lengths of some line segments (in fact any positive numbers),

and ¯x j between 1 and n. We will let Sn
j denote the sum of all

µ
n
j

¶
products of

the form ti1 ¢¢¢tij , where i1; ¢¢¢ij are di®erent elements of f1; ¢¢¢; ng, i.e.

Sn
j =

X

1· i1<¢¢¢<ij· n

tij ¢¢¢tij: (5)

Finally we employ the symbol P (t1; ¢¢¢; tn; ¯1; ¢¢¢; ¯n; r) to denote the tangential n-gon
A with given lengths of its tangents t1;¢¢¢; tn (the angles ¯ j are specī ed already and
r is the radius of CA).

2 Tangential Polygon and Corresponding Equation

Corollary 3 in the article [1] asserts that the radius rk of CA inscribed in P (t1; ¢¢¢; tn;
¯1; ¢¢¢; ¯n; rk) is a root of the equation

Sn
1 xn¡ 1 ¡ Sn

3 xn¡ 3 + ¢¢¢+ (¡ 1)ºSn
n = 0 (6)

if n is odd and a root of

Sn
1 xn¡ 2 ¡ Sn

3 xn¡ 4 + ¢¢¢+ (¡ 1)´ Sn
n¡ 1 = 0 (7)

if n is even, where º = (1 + 3 + 5 + ¢¢¢+ n)+ 1 and ´ = (1 + 3 + 5 + ¢¢¢+(n ¡ 1))+ 1.
Here we shall improve this result by the following theorem.

THEOREM 2.1. Let t1; ¢¢¢; tn any given lengths (in fact any positive real numbers).
Then there are tangential polygons

P (t1; ¢¢¢; tn; ¯
(k)
1 ; ¢¢¢; ¯ (k)

n ; rk); k = 1; [(n ¡ 1)=2];

where ¯
(k)
1 + ¢¢¢+ ¯

(k)
n = (n ¡ 2k)¼=2.

PROOF. Since arctanx is continuous it is clear that for each ¯xed k = 1; [(n ¡ 1)=2];
there is rk which satis¯es

nX

j=1

arctan

µ
rk

tj

¶
= (n ¡ 2k)

¼

2
:

Thus ¯
(k)
j = arctan(rk=tj) for j = 1; n.

From this result it follows that the equations (6), (7) possess real roots only.
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COROLLARY 2.1. The roots xk of the equations

(n+1)=2X

j=1

(¡ 1)j+1

µ
n

2j ¡ 1

¶
x(n¡ 2j+1)=2 = 0; n odd; (8)

n=2X

j=1

(¡ 1)j+1

µ
n

2j ¡ 1

¶
x(n¡ 2j)=2 = 0; n even; (9)

are of the form

xk = r2
k = tan2(n ¡ 2k)

¼

2n
; k = 1; [(n ¡ 1)=2]: (10)

Indeed, this follows by putting t1 = ¢¢¢= tn = 1 into (6) and (7) respectively.

COROLLARY 2.2. When n is a prime number, then equation (8) is normal over
the ¯eld Q (of rational numbers).

PROOF. If n is a prime, and if º = (1 + 3 + ¢¢¢+ n) + 1, we may assert that the
equation µ

n
1

¶
x(n¡ 1)=2 ¡

µ
n
3

¶
x(n¡ 3)=2 + ¢¢¢+ (¡ 1)º = 0 (11)

is irreducible over the ¯eld Q because the equation

µ
n
1

¶
¡

µ
n
3

¶
y + ¢¢¢+ (¡ 1)ºy(n¡ 1)=2 = 0

is irreducible over Q by the Eisenstein criterion. Using (10), and the straightforward
formula

tan(m® ) =

µ
m
1

¶
tan ® ¡

µ
m
3

¶
tan3 ® + ¢¢¢

1 ¡
µ

m
2

¶
tan2 ® +

µ
m
4

¶
tan4 ® ¡ ¢¢¢

;

it is easy to see that the root¯eld of the equation (11) can be generated by only one
root, that is,

Q
³
tan2 ¼

2n

´
= Q

³
tan2 ¼

2n
; ¢¢¢; tan2(n ¡ 2)

¼

2n

´
:

The proof is complete.

COROLLARY 2.3. The order of the Galois group of equation (8) is (n¡ 1)=2 when
n is a prime, and this group is solvable.

PROOF. Since Q
¡
tan2 ¼

2n

¢
has the degree (n¡ 1)=2 over the ¯eld Q, the order of the

Galois group of (8) is (n ¡ 1)=2 too. If Q1 = Q
¡
tan2 ¼

2n

¢
and Q2 = Q (expfi¼=(2n)g),

then Q1 is a sub¯eld of Q2. The sub¯eld Q1 is the root¯eld of the equation (8) and
Q2 is the root¯eld of the equation x2n ¡ 1 = 0. As is well known the Galois group of
the equation x2n ¡ 1 = 0 is solvable and every subgroup of a solvable group is solvable.

COROLLARY 2.4. Equations (8) and (9) are solvable by radicals for any positive
integer n.



M. Radi¶c and T. K. Pog¶any 121

PROOF. If m is a positive integer, then tan ¼=(2n) can be expressed by radicals
over Q since expfi¼=(2n)g can be expressed by radicals over Q.

THEOREM 2.2. Let ¸ and n be given positive integers and let t1; ¢¢¢; t¸ n be any
given lengths (positive real numbers), such that

ti+jn = ti ; i = 1;n; j = 1; ¸ ¡ 1: (12)

Now, assume · = ¸n, and let f1(x); f2(x); g1(x); g2(x) be the following polynomials:

f1(x) = S·
1x· ¡ 1 ¡ S·

3x· ¡ 3 + ¢¢¢+ (¡ 1)º· S·
· · odd

f2(x) = S·
1x· ¡ 2 ¡ S·

3x· ¡ 4 + ¢¢¢+ (¡ 1)´· S·
· ¡ 1 · even

g1(x) = Sn
1 xn¡ 1 ¡ Sn

3 xn¡ 3 + ¢¢¢+ (¡ 1)º Sn
n n odd

g2(x) = Sn
1 xn¡ 2 ¡ Sn

3 xn¡ 4 + ¢¢¢+ (¡ 1)´ Sn
n¡ 1 n even;

where º· = (1 + 3 + ¢¢¢+ ·) + 1; ´· = (1 + 3 + ¢¢¢+ (· ¡ 1)) + 1, and º; ´ are de¯ned
already. Then

(g1(x) jf1(x) or g1(x) jf2(x)) and g2(x)j f2(x): (13)

PROOF. As in the proof of Theorem 2.1, this theorem is almost evident since the
circle CA(1) inscribed in the n-gon A(1) = A1 ¢¢¢An has the same radius as the circle
CA(¸ ) inscribed in the ¸n-gon

A(¸) = A(1)¢¢¢A(1)| {z }
¸

:

From
¸(¯

(k)
1 + ¢¢¢+ ¯ (k)

n ) = (¸n ¡ 2k)¼=2; k = 1; [(¸n ¡ 1)=2]; (14)

we have

¯
(k)
1 + ¢¢¢+ ¯ (k)

n =

µ
n ¡ 2k

¸

¶
¼

2
; k = 1; [(¸n ¡ 1)=2]; (15)

and it follows that the set f1; ¢¢¢; [(¸n ¡ 1)=2]g contains m = [(n ¡ 1)=2] numbers
k1; ¢¢¢; km, say, that kj = j¸; j = 1;m. Thus there are m tangential polygons

P (t1; ¢¢¢; tn; ¯
(kj)
1 ;¢¢¢; ¯ (kj)

n ; rkj ); j = 1; [(n ¡ 1)=2];

such that their radii are the roots of the equations

Sn
1 xn¡ 1 ¡ Sn

3 xn¡ 3 + ¢¢¢+ (¡ 1)ºSn
n = 0 n odd;

Sn
1 xn¡ 2 ¡ Sn

3 xn¡ 4 + ¢¢¢+ (¡ 1)´Sn
n¡ 1 = 0 n even:

The proof is complete.

We remark that the polynomials which correspond to the angles
¡
n ¡ 2k

¸

¢
¼
2 for

di®erent k may have di®erent degrees with di®erent parities. The following is an
example.
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EXAMPLE. When ¸ = 4 and n = 5; we have

¯
(k)
1 + ¢¢¢+ ¯

(k)
5 =

µ
5 ¡ k

2

¶
¼

2
; k = 1;9:

It follows that

tan
³
¯

(k)
1 + ¢¢¢+ ¯

(k)
5

´
= 0; k = 2;6

cot
³
¯ (k)

1 + ¢¢¢+ ¯ (k)
5

´
= 0; k = 4;8

tan
³
¯

(k)
1 + ¢¢¢+ ¯

(k)
5

´
= 1; k = 1;5; 9

cot
³
¯

(k)
1 + ¢¢¢+ ¯

(k)
5

´
= ¡ 1; k = 3;7:

Denote the corresponding polynomials by pj(x); j = 1; 2; 3; 4. Then we have

p1(x) = x4 ¡ S5
2x2 + S5

4 ;

p2(x) = S5
1x

4 ¡ S5
3x2 + S5

5 ;

p3(x) = x5 ¡ S5
1x4 ¡ S5

2x3 + S5
3x

2 + S5
4x ¡ S5

5 ;

p4(x) = x5 + S5
1x4 ¡ S5

2x3 ¡ S5
3x

2 + S5
4x + S5

5 ;

and consequently

p3(x)p4(x) = x10 ¡ ((S5
1 )2 + 2S5

2 )x8 + (2S5
4 + 2S5

1S5
3 + (S5

2)
2)x6

¡ (2S5
1S5

5 + 2S5
2S

5
4 + (S5

3)
2)x4 + (2S5

3S5
5 + (S5

4)
2)x2 ¡ (S5

5)
2;

and

4

4Y

j=1

pj (x) = S20
1 x18 ¡ S20

3 x16 + S20
5 x14 ¡ ¢¢¢¡ S20

19 :

We remark that

2p1(x)p2(x) = S10
1 x8 ¡ S10

3 x6 + S10
5 x4 ¡ S10

7 x2 + S10
9 :

Therefore the following relations

p2(x)jS20
1 x18 ¡ S20

3 x16 + ¢¢¢¡ S20
19

and
2p1(x)p2(x)jS20

1 x18 ¡ S20
3 x16 + ¢¢¢¡ S20

19;

are easily seen.

COROLLARY 2.5. If n · 10, then both equations

S·
1 x· ¡ 1 ¡ S·

3 x· ¡ 3 + ¢¢¢+ (¡ 1)º · S·
· = 0; · odd; (16)

and
S·

1x· ¡ 2 ¡ S·
3x· ¡ 4 + ¢¢¢+ (¡ 1)´· S·

· ¡ 1 = 0; · even; (17)
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are solvable by radicals for all positive integers ¸ . (Here · = ¸n).

PROOF. From (15) it follows that

cot(¸Ã k) = 0; · odd;

tan(¸Ã k) = 0; · even;

where Ãk = ¯
(k)
1 + ¢¢¢+ ¯

(k)
n . Transforming these two equations into sums of terms of

the form tan(m¯
(k)
j ) where m is a positive integer, then by means of

tan(m® ) =
1

cot(m®)
=

µ
m
1

¶
tan ® ¡

µ
m
3

¶
tan3 ® + ¢¢¢

1 ¡
µ

m
2

¶
tan2 ® +

µ
m
4

¶
tan4 ® ¡ ¢¢¢

and by replacing tan ¯
(k)
j with x=tj ; one obtains algebraic equations in x which are

solvable by radicals (here x denotes the radius of CA). Indeed, when n · 10; each of
the equations

Sn
1 xn¡ 1 ¡ Sn

3 xn¡ 3 + ¢¢¢+ (¡ 1)º Sn
n = 0; n odd; (18)

or
Sn

1 xn¡ 2 ¡ Sn
3 xn¡ 4 + ¢¢¢+ (¡ 1)´Sn

n¡ 1 = 0; n even: (19)

is solvable by radicals, and tan
¡
n ¡ 2k

¸

¢
¼
2 can be explicitly expressed by radicals over

Q(t1; ¢¢¢; tn) according to Theorem 2.1 and its Corollaries.

COROLLARY 2.6. If equations (18) and (19) are solvable by radicals, then equa-
tions (16) and (17) are solvable by radicals as well.

We remark that it is quite possible that (16) and (17) are solvable by radicals for
any n positive integer. But this remains to be proved.
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