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Abstract

In this paper we obtain a discrete version of Shannon's classical theorem that
when the probabilities are frequencies the entropy function attains its maximum
value when probabilities are as equal as possible.

In this paper we address the following question: When does the entropy function
attain its maximum values if the probabilities arise from frequencies? Every proba-
bility distribution has some `uncertainty' associated with it. The concept of `entropy'
was introduced by Shannon [3] in 1948 to provide a quantitative measure of this uncer-
tainty. According to the maximum-entropy principle formulated by Jaynes [1], it is of
considerable interest to maximize entropy among probability distributions, so that the
one having the maximum entropy is the `most unbiased', `least prejudiced' or `most
uniform'. For speci¯c situations where we need to maximize entropies, the readers may
consult [2].

Consider a discrete probability distribution where the sample space S consists of
a ¯nite number of elements, say S = fa1; a2; :::; akg, and with each elementary event
faig we have a probability pi associated with it satisfying the following conditions : (i)
p1; :::; pk ¸ 0; and (ii) p1 + p2 + ::: + pk = 1. Shannon in 1948, de¯ned the entropy for
this probability distribution as

H(p1; p2; :::; pk) = ¡
kX

i=1

pi log pi:

A special case of the above distribution is of particular interest where all outcomes
are equally likely. In that case, it follows that pi = 1=k. It is well known, through
a classical theorem of Shannon, that H(p1; p2; :::; pk) attains its maximum value log k
when all probabilities are equal to 1=k:

The above result is based on the assumption that variables can assume arbitrary
values in the interval (0; 1). There are occasions, however, when this need not be the
case. In the most classical example of probability, we have a set A of cardinality N
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which is partitioned into A1 [ A2 [ ::: [ Ak where ni = jAij for i = 1; 2; :::; k and
N = n1 + n2 + ::: + nk. Here A1; :::; Ak are interpreted as the partitions of the sample
space A and n1; :::; nk are frequencies of occurrences of Ai's. Therefore, the probability
pi of an event Ai is given by ni=N where N is the total number of outcomes and ni

is the number of outcomes favorable to Ai. Here, the entropy needs not assume its
maximum value log k since the value pi = 1=k may be forbidden for some i.

In this note, we will obtain the extreme values of the entropy function in the discrete
case where the probabilities may assume only rational values ni=N corresponding to
di®erent partitions of the set A into nonempty subsets Ai's. All the notations and
terminologies are standard and we presume elementary basic knowledge of probability.
One of the fundamental requirements of any entropy function is that it should be a
symmetric function of its arguments. That certainly is true for the discrete case as the
value of entropy depends only on the sizes of Ai's. Moreover, the following two results
are also true.

THEOREM 1. The entropy function H(A1; A2; :::; Ak) assumes its maximum value
for the partitions for which the sizes of the subsets A1; :::; Ak di®er by at most 1:

THEOREM 2. The entropy function H(A1; A2; :::; Ak) assumes its minimum value
for the partitions for which all subsets but exactly one have cardinality 1:

As we have already observed that the entropy for the discrete case depends only on
the sizes of Ai's, i.e. it is a symmetric function of its arguments:

H(A1; A2; :::; Ak) = H(Ai1 ; Ai2 ; :::; Aik
)

if (i1; i2; :::; ik) is a permutation of (1; 2; :::; k). Thus, we are led to say that two parti-
tions ¼1 = (A1; A2; :::; Ak) and ¼2 = (B1; B2; :::; Bk) of a set A into k nonempty subsets
are equivalent if the multisets fjAijj1 · i · kg and fjBj jj1 · j · kg are identical.
The above relation is easily seen to be an equivalence relation, which divides all the
partitions into equivalence classes. The entropy function remains constant on each
equivalence class.

In what follows we record a simple yet important observation that there is a unique
equivalence class with part sizes di®ering by at most 1 and probabilities pi's are close
to 1=k.

LEMMA 3.1. There exists a unique equivalence class such that every partition
¼ = (A1; A2; :::; Ak) of the class satis¯es jjAij ¡ jAj jj · 1 for 1 · i; j · k and
jjAij =N ¡ 1=kj < 1=N for 1 · i · k.

The proof is elementary and is thus omitted.
The proof of our theorem 1 is reminiscent of the proof of Sperner's classical theorem

that the number of subsets of an n-set such that no subset is contained in another can
be at most Cn

dn=2e. For if there are sets of small (large) size they can be replaced by sets

of size one larger (smaller) without violating the condition and the theorem follows.
We shall also show that if the partition has two sets having sizes di®ering by at least
2; one can then remove one element from the larger set and include it in the smaller
set resulting in a net increase in the entropy. It will then follow that the optimum
is attained over the equivalence class de¯ned in Lemma 3.1 which remains ¯xed with
respect to the operation just described.
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We now turn to the proof of Theorem 1. The cases k = 1 and k = N are trivial.
When k = 1; Hmax(A) = Hmin(A) = 0: When k = N; all probabilities are equal to 1=N
leading to an optimal value Hmax(A1; A2; :::AN ) = Hmin(A1; A2; :::; AN ) = log2 N ,
where all Ai's are singletons, as in the classical case. Furthermore, the case k = N ¡ 1
can also be disposed of at once by observing that there is only one part of size 2 and
all the remaining parts are singletons implying

Hmax(A1; A2; :::; AN¡ 1) = Hmin(A1; A2; :::; AN¡ 1) = log2 N ¡ 2

N
:

Therefore, in what follows we shall assume 2 · k · N ¡ 2. Let ¼ = (A1; A2; :::; Ak)
be a partition, 2 · k · N ¡ 2, having two sets say Ai and Aj , i 6= j, such that
jAij ¡ jAj j ¸ 2. If a 2 Ai then de¯ne a new partition ¼ 0 = (A0

1; A
0
2; :::; A

0
k), where

A0
m = Am for m 6= i; j, A0

i = Ai ¡ fag and A0
j = Aj [ fag. It follows that

H(¼ 0) ¡ H(¼) = ¡
µ

pi ¡ 1

N

¶
log2

µ
pi ¡ 1

N

¶

¡
µ

pj +
1

N

¶
log2

µ
pj +

1

N

¶
+ pi log2 pi + pj log2 pj

=
1

N

µ
log2

µ
pi ¡ 1

N

¶
¡ log2

µ
pj +

1

N

¶ ¶
+ pi log2 pi

¡ pi log2

µ
pi ¡ 1

N

¶
+ pj log2 pj ¡ pj log2

µ
pj +

1

N

¶
: (1)

Since jAij ¡ jAj j ¸ 2 and pi ¡ pj ¸ 2=N , hence pi ¡ 1=N ¸ pj + 1=N . Therefore, the
¯rst term in (1) is non-negative and we have

H(¼ 0) ¡ H(¼) ¸ pi log2 pi ¡ pi log2

µ
pi ¡ 1

N

¶
+ pj log2 pj ¡ pj log2

µ
pj +

1

N

¶
:

Simplifying and using Npi = jAij and Npj = jAj j, we get

H(¼ 0) ¡ H(¼) ¸ pi

µ
log2

jAij
jAij ¡ 1

¶
+ pj

µ
log2

jAj j
jAj j + 1

¶
: (2)

Observe that log2 x ¸ 1 if x ¸ 1, and jAj j=(jAj j+1) ¸ 1=2 which implies log2 jAj j=(jAj j+
1) ¸ ¡ 1. Putting these values in (2) we obtain

H(¼ 0) ¡ H(¼) ¸ pi ¡ pj

and the theorem follows.

As for the proof of Theorem 2, one can de¯ne a local operation on any given partition
by moving an element from the smaller set into a bigger set. This operation does not
increase the entropy; and thereby deduce that the entropy is minimized when all but
one set have cardinality 1.

As an immediate corollary, the extreme values of the entropy, where a n-set is
partitioned into k subsets, is given by
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Hmax = ¡ 1

N

½
r(m + 1) log2

m + 1

N
+ (k ¡ r) log2

m

N

¾
;

and

Hmin = ¡ 1

N

½
(k ¡ 1) log2

1

N
+ (N ¡ k + 1) log2

µ
1 ¡ k ¡ 1

N

¶ ¾
;

where N = mk + r for 0 · r < k.

Theorem 1 and Theorem 2 are discrete analogues of Shannon's classical theorem
that the entropy is maximized when all probabilities are equal. Note that Theorem 1
and Theorem 2 do not follow from Shannon's theorem. It would be interesting to look
for more cases where the probability variation is somewhat restricted and compute the
corresponding extreme values of the entropy functions.
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