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Abstract

We ¯nd quadratic systems with homoclinic cycles described by quintic curves.

The determination of homoclinic bifurcations of quadratic systems is not known in
general [1,5,6,7]. In [2-4], cubic or quartic homoclinic cycles are found. In this paper,
we present quadratic systems with homoclinic cycles which are described by quintic
curves.

Consider the quadratic system

dx

dt
= P (x; y);

dy

dt
= Q(x; y); (1)

where P and Q are second order bivariate polynomials with real coe± cients. If the
system (1) has a homoclinic cycle, then without loss of any generality, we may suppose
that (1) the homoclinic cycle passes through the origin, which is a hyperbolic saddle;
(2) the stable and unstable manifold of the origin are tangent to the lines x2 ¡ y2 = 0
and the homoclinic orbit is located in the region D = f(x; y)jjyj < jxj; x > 0g; and (3)
one of the in¯nite singular points is ìn the y-axis direction'.

Under these assumptions, the corresponding normal form is

dx

dt
= ¹P (x; y);

dy

dt
= ¹Q(x; y); (2)

where ¹P (x; y) = cx + y + a1x
2 + a2xy; ¹Q(x; y) = x + cy ¡ x2 ¡ b2xy ¡ b1y

2; jcj < 1
and a1; a2; b1; b2 are real. It is easy to see that the quintic algebraic homoclinic cycle
through the origin of the system must take the following form:

F (x;y) = x2 ¡ y2 + F3 + F4 + F5 = 0; (3)

where F3; F4 and F5 are homogeneous polynomials of degrees 3; 4 and 5 respectively.

By Batins' formula, we are able to ¯nd, by means of the software Mathematica, an
invariant quintic curve of the above system.
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THEOREM 1. If the coe± cients in the polynomials ¹P (x; y) and ¹Q(x; y) satisfy

a1 = ¡ 150c + 10c3 + 225c® + 93c3® ¡ 6c5®

5(75 + 29c2)
;

a2 = ¡ ® ;

b1 = 2® ;

b2 =
575c + 25c3 + 425c® + 214c3® ¡ 15c5®

5(75 + 29c2)
;

where

® =
5[¡ 1125 ¡ 270c2 + 43c4 + (75 + 29c2)

p
225 ¡ 18c2 + c4]

2(¡ 5625 ¡ 2925c2 ¡ 259c4 + 21c6)
:

Then (2) has an invariant quintic curve described by

F (x; y) = x2 ¡ y2 + a30x
3 + a21x

2y + a12xy2 + a40x
4 + a31x

3y + a50x
5 = 0; (4)

which satis¯es
Fx

¹P + Fy
¹Q = (2c + Ax + By)F; (5)

where A = 5a1; B = 5a2; a12 = ® ;

a30 =
¡ 250 ¡ 30c2 ¡ 625® ¡ 225c2® + 18c4®

5(75 + 29c2)
;

a21 = ¡ 2(100c + 25c® + 27c3® )

5(75 + 29c2)
;

a31 =
2c®(375 + 5c2 + 55c2® ¡ 3c4® )

15(75 + 29c2)
;

a40 =
©
27500c4 ¡ 4800c6 + 180c8 + 3515625® + 1968750c2®

¡ 5000c4® + 71250c6® + 5391c8® ¡ 108c10®
ª

=
©
5(75 + 29c2)(5625 + 2925c2 + 259c4 ¡ 21c6)

ª
;

a50 = ¡
©
® (¡ 3093750c2 ¡ 427500c4 ¡ 8900c6 + 2500c8 ¡ 30c10

+10546875® + 6187500c2® ¡ 701250c4® ¡ 325750c6®

+42317c8® ¡ 1614c10® + 18c12®)
ª

=
©
75(75 + 29c2)(5625 + 2925c2 + 259c4 ¡ 21c6)

ª
:

Next, note that when c < 0, if we let x = ¹x, y = ¡ ¹y, t = ¡ ¹t, and c = ¡ ¹c in (2),
then the resulting system has the same form. Therefore, we will restrict our attention
to the cases where c = 0 or 0 < c < 1 in the following discussions.

From now on, we will suppose that the coe± cients a1; a2; b1; b2 and ® satisfy the
conditions of Theorem 1. To emphasize its dependence on the parameter c; the system
(2) will also be denoted by E(c).

The curve (4) can be rewritten as

F (x; y) = (a12x ¡ 1)y2 + (a21 + a31x)x2y + x2(1 + a30x + a40x
2 + a50x

3) = 0: (6)
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Solving y from the equation F (x; y) = 0, we get

y§ =
©
¡ (a21 + a31x)x2 § x((a2

13 ¡ 4a12a50)x
4

+2(a21a31 ¡ 2a12a40 + 2a50)x
3 + (a2

21 ¡ 4a12a30 + 4a40)x
2

¡ 4(a12 ¡ a30)x + 4)1=2
o

= f2(a12x ¡ 1)g :

It can be checked that when 0 < c < 1; the equation 1 + a30x + a40x
2 + a50x

3 = 0
has only a real root, which indicates that the curve de¯ned by (4) has, besides the
origin, only one point of intersection with the x-axis. Moreover, x = 1=a12 = 1=® (note
that ® < 0) is the asymptote of the quintic curve (see the following ¯gure).

LEMMA 1. The system E(c) has at most one singular point which is not on the
curve de¯ned by (4).

PROOF. According to (5), we know that a singular point A0 = (x0; y0), which is
not on F = 0, must be on the straight line 2c + Ax + By = 0. Solving the system of
equations

cx + y + a1x
2 ¡ ® xy = 0;

x + cy ¡ x2 ¡ b2xy ¡ 2®y2 = 0;

2c + 5a1x + 5a2y = 0;

we obtain the unique solution

x0 =
75 + 29c2

75 + 5c2 + 3c2® ¡ 3c4®
;

y0 = ¡ 3c(75 + 29c2)

5(75 + 5c2 + 3c2® ¡ 3c4®)
;

as required.

LEMMA 2. The system E(c) has two singular points A1 = (x1; y1) and A2 =
(x2;y2) besides (0; 0) and A0 = (x0; y0), where

x1 =
¡ 5m + 5

p
k

n
;
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y1 =
cx1 + a1x1

2

®x1 ¡ 1
;

x2 =
¡ 5m ¡ 5

p
k

n
;

y2 =
cx2 + a1x2

2

®x2 ¡ 1
;

and

m = 115c2 ¡ 375® ¡ 3c6® + c4(5 + 66® );

n = ® [550c2(® ¡ 1) + 1875® + 6c6® ¡ c4(10 + 143®)];

k = m2 + (¡ 75 + 46c2 + 29c4)n:

Indeed, the proof follows by solving ¹P = 0; ¹Q = 0:

From the expressions of the singular points A0, A1 and A2, it is easy to see that :
(i) when c = 0; A0 is on the x-axis, A1 and A2 \disappear to the in¯nity"; (ii) when
0 < c < 1, A0 is in the fourth quadrant, A1 is in the third quadrant and A2 is in the
second quadrant; and (iii) both A1 and A2 are on the curve de¯ned by (4).

LEMMA 3. (i) If c = 0, then A0 is a center; and (ii) if 0 < c < 1, then A0 is a focus
and A1, A2 are nodes.

PROOF. (i) If c = 0, then the system E(c) becomes dx=dt = y; dy=dt = x ¡ x2.
It is evident that the system E(c) is a symmetrical integrable system such that (y2 ¡
x2 +2x3=3) is constant. Thus A0(1; 0) is a center. (ii) If 0 < c < 1, A0 is a focus, since

D = div( ¹P; ¹Q)jA0 =
c(c2 ¡ 25)(¡ 5 + 10® + 3c2®)

5(¡ 75 ¡ 5c2 ¡ 3c2® + 3c4®)

J = ( ¹Px
¹Qy ¡ ¹Py

¹Qx)jA0

=
(1875 ¡ 600c2 ¡ 75c4 ¡ 1875® ¡ 475c2® + 17c4® + 45c6®)

25(75 + 5c2 + 3c2® ¡ 3c4®)

and D2¡ 4J < 0. In addition, neither A1 nor A2 can be a focus or a center for they are
on the curve (4). Furthermore, (0; 0) is a saddle, and the four points (0; 0); A0; A1; A2

are the corners of a concave quadrilateral. According to Berlinskii Theorem, A1 and
A2 are nodes. The proof is complete.

LEMMA 4. When 0 < c < 1, the system E(c) has three singular points in the
in¯nity and one is a node, the others are saddles.

PROOF. Applying the Poincare transformation: x = v=z; y = 1=z; dt = zd¿;
a1 + b2 = ¡ ¯; and a2 + b1 = ® , the system E(c) changes to

½
dz=d¿ = ¡ z[¡ 2® + cz + (a1 + ¯)v + vz ¡ v2] = P ¤(x; y)
dv=d¿ = (1 ¡ v2)z + v(® ¡ ¯v + v2) = Q¤(x; y)

: (7)
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When 0 < c < 1, there are three singular points B0(0; v0), B1(0; v1), B2(0;v2) on the
straight line z = 0, where

v0 = 0; v1 =
¯ +

p
(¯)2 ¡ 4®

2
; v2 =

¯ ¡
p

(¯ )2 ¡ 4®

2
:

Now we analyze the properties of the points:

(P ¤
z )jz=0 = 2® ¡ (a1 + ¯)v + v2;

(P ¤
v )jz=0 = 0;

(Q¤
z)jz=0 = 1 ¡ v2;

(Q¤
v)jz=0 = ® ¡ 2¯v + 3v2 = f 0(v):

The roots of the characteristic equations of the singular points are (¸1)
(i) = ® ¡ a1vi;

(¸2)
(i) = f 0(vi) for i = 1; 2; (¸1)

(0) = 2® and (¸2)
(0) = ® : Since ® < 0; ® ¡ a1v2 < 0 and

f 0(v2) > 0, thus B0(0; 0) is a stable node and B2(0; v2) is a saddle. Finally, according
to the Euler's index-sum theorem, we know that B1(0; v1) is a saddle. The proof is
complete.

By means of Lemmas 1-4, we know that, under the condition 0 < c < 1; there is no
singular point other than the origin which lies on the non-isolated closed component
of the quintic curve de¯ned by (4). The following result now holds.

THEOREM 2. When 0 < c < 1, the non-isolated closed component of the quintic
curve de¯ned by (4) constitutes the homoclinic cycles of the system E(c) and its inner
singular point is a focus.

To determine the global phase graphs of the system E(c), we need to discuss whether
the system has limit cycles. By means of Dulac's theorem, we obtain the following
result.

THEOREM 3. The system E(c) has no limit cycles.

Indeed, the y-axis is non-tangent (besides the origin), therefore the y-axis and the
invariant curve de¯ned by (4) divide the plane into ¯ve regions. Taking Dulac function
F ¡ 1, then

div(F ¡ 1 ¹P; F ¡ 1 ¹Q) = F ¡ 1[ ¹Px + ¹Qy ¡ (2c + Ax + By)]

= F ¡ 1(¡ 3a1 ¡ b2)x

= F ¡ 1(¡ 2a1 + ¯)x:

The right hand side of the above equality is a continuous function and it keeps the
same sign in each region. Thus by Dulac's Theorem, there is no limit cycle in each
region.

We remark that by letting y = xu, the system E(c) is changed into a cubic system

½
dx=dt = x[c + u + (a1 + a2u)x]
du=dt = 1 ¡ u2 ¡ (1 ¡ ¯u + ®u2)x

;
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while the homoclinic cycle de¯ned by (4) changes into the heteroclinic cycle:

x2[1 ¡ u2 + (a30 + a21u + a12u
2)x + (a40 + a31u)x2 + a50x

3] = 0:

By means of the informations obtained above, the global phase graphs of the system
E(c) can easily be obtained (see the following ¯gures).
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