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Global Attractivity for a Differential-Difference
Population Model *
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Abstract

In this paper, sufficient conditions are found for the positive equilibrium of
the differential-difference equation (1) to be globally attractive.

Consider the delay differential equation

1-N({t—7) \“
N'(t) = N > 1
(0 =N (T ) 120 )
where r(t) € C([0,0),(0,00)), A(t) € C([0,00),(0,00)), 7 > 0 and « is a ratio of
two odd integers so that o > 1. If & = 1, A(¢) = A then (1) becomes the so called
“food-limited” model

N'(t) = r(t)N(t):;VN—m, t>0, (2)

which has been studied by many authors, see [1-6]. Equation (1) was proposed in
[1] but has not been studied. In this paper, we shall prove two theorems related to
attractivity of the positive equilibrium 1. Before stating our results, let us first note
that equation (1) under the initial condition

N(t) = ¢(t), t € [-7,0], ¢ € C([-7,0],[0,00)), $(0) > 0. (3)

has a unique positive solution N (t) on [—T, 00).
THEOREM 1. Suppose 0 < A(t) < 1 for ¢t > 0,

R R
L et @
and . (5)
imewp [ 7 Syds <3 ©)
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Then every solution of (1) and (3) tends to 1 as ¢t tends to +oo.
THEOREM 2. Suppose A(t) > 1 for ¢ > 0, (4) holds and

t
limsup/ r(s)ds < 3, (6)
t

t——+oo —T

then every solution of (1) and (3) tends to 1 as ¢ tends to +oo.
To prove our results, we need the following lemmas.

LEMMA 1. For any v € [0,1), In(2e~*(!=*/2) — 1) > —2¢, and for any u € [0, c0),
In(2e*(1+4/2) — 1) > 24,

Indeed, let f(v) = 2e=v(1=v/2) — ¢=2¥ and g(v) = (1 — v)e*( /2| Tt is easy to see
that g(0) =1, ¢’(v) = —v2e?(1+%/2) <0, and for some ¢ € (0,v),
f'(v) =271 — g(v)] = —2e*"¢'(¢)v 2 0.
It follows that f(v) > f(0) =1 for v € [0, 1). The other assertion is similarly proved.
LEMMA 2. Assume that v € (0,1). Then for any x € [0, ),

—v(l—v/2) _ —vz
I 1+ [2e 1le < —v (

v v
) B .

2
PROOF. Set a = 2¢=*(=/2) 1 and f(z) = In ((1 + ae~¥*) /(1 + e~"%)). Observe
that f(0) = —v (1 —v/2), f'(0) = v[ev~¥/2) —1]/2 and

R T e

Since a < 1, it follows that f”(z) < 0 for # > 0. By the mean value theorem and the
fact that e*(1=%/2) <1 4 z for = > 0, we have

flz) < f0)+ f(0)x=—-v (1 - g) + %[e”(l_”m) —1]
v v?
< -v (1 - 5) + 5T

LEMMA 3. The system of inequalities

1 1-—
tu < 2v,—1In Y < 2u, (8)
1—u 1+

In

has a unique solution (u,v) = (0,0) in the region {(u,v): -1 <v <0 <wu < 1}.
PROOF. Set g(z) = exp (2(1 —z)/(1 + x)), f(z) =z — g(g9(x)), and

h(z) = (1+ z)*[1 + g(x)]* — 16g(x)g(g(x)).

Observe that h(1) =0,

f@)=1-4(2)d(g9(x)) =1~

16g(x)g(g(x))
(14 2)2[1 + g(2)]*’
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and for z > 1

W (x) 2[1+ g(2)][(1 + z)(1 + g(x)) — 4g(=)]
64 [1— g(x)]?
+—(1 " 56)29(96)9(9(:6))—[1 I

It follows that h(xz) > k(1) =0 for x > 1, and so f/(x) > 0 for x > 1. This shows that
f(z) > f(1) =0 for > 1. On the other hand, from (8), we have g(u) <A <1< pu <
g(A\), where A = (1 —v)/(1 +v) and p = (1 + uw)/(1 —w). If w > 0, then u > 1, and
so < g(A\) < g(g(n)) < p. This contradiction implies that u = v = 0. The proof is
complete.

LEMMA 4. Suppose (4) holds. Then every solution of (1) and (3) that does not
oscillate about 1 tends to 1 as ¢t — oo.

> 0.

The proof is similar to the arguments presented in [2] and is thus omitted.

LEMMA 5. Suppose 0 < A(t) <1 for ¢ > 0 and (5) holds. Let N(t) = N(¢;0,¢)
be a solution of (1) and (3) which is oscillatory about 1. Then N (¢) is bounded above
and is strictly bounded below by 0.

PROOF. Let £y > 0 be large enough so that

L (s)
/ D)=t

for all t > tg. Let t* be a local maximum point of N(t) for t > to+ 7. Then N'(t*) =0
and by (1), N(t* — 1) = 1. Integrating (1) from t* — 7 to t*,

o
exp (/ r(s)ds) <et
t*—71

Consequently, limsup,_, ., N(t) < e*. Next, let t, be a local minimum point of N (t)
for t > tg + 37. Then N'(t,) = 0 and N(t. — 7) = 1. Proceeding as before and using
the fact that

IN

1-N(t—7) < 1—et < 1—et
T+ AON(E—7) = T+ A = A1+ )

for t > to + 7, we have
Uop(s) [1—et” 1—e*\“
N(ty) > — | ds| > 4| —— .
(&) 2 exp (/t_ X (s) {He‘*} ’ exp( (1+e4> )

L 1—e*\"
llgégf N(t) > exp (4 <m> ) > 0.

The proof is complete.

Hence
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LEMMA 6. Assume that A(t) > 1 for ¢ > 1 and (6) holds. Let N(t) = N(¢,0,¢)
be a solution of (1) and (3) which is oscillatory about 1. Then N(¢) is bounded above
and is strictly bounded below by 0.

The proof is similar to the proof of Lemma 5 and is thus omitted.

We now turn to the proof of Theorem 1. Let u = limsup, . N(t) and v =
liminf; . N(¢). Then by Lemma 5, 0 < v < 1 and u > 1. It suffices to show that
u=v=1. For any € € (0,v), choose ¢, = to(g) such that

n=v—e<NEt—7)<u+e=u,t>1, 9)
and
t
r(s)
ds <3 t>tg—T. 10
e S e T o

Note that (1 —z)/(1 4+ Ax) < (1 —2)/(A1 +x)) for x < 1 and (1 —x)/(1 + \z) >
(1 —-2)/(AM1+z)) for z > 1. Thus

N'(t) < r(t)N (1) <&>a < r(t)N(t) <)\1_—”1)>a t>t0, (11)

14+ A(t)v; ()1 + v
and
’ 1-— (5% * 1-— U7 @
N'(t) = r(t)N(t) (HA—(t)ul> > r(t)N(t) <m> L > 1. (12)
Consequently,
N < D Nyl sy (13)
“xe) e 0
and
/ T(t) 1-— Ul
N'(t) = Aa(t)N(t)Hul, t > to. (14)

Set R(t) = r(t)/A\*(t). Let {p,} be an increasing sequence such that p, > to + 7,
limy, 0o P = +00, N'(pn) = 0 and lim, o N(pn) = u. By (1), N(p, — 7) = 1. For
pn — T <t < py, by integrating (13) from ¢t — 7 to p, — 7, we get

N 1—um Pn=T
(t_T)ZeXp _1+U1 R(S)ds 7pn_7—§t§pn-
t—T

Substituting this into (1), if N(¢t —7) < 1, we have

N'(1)

IN

=

=2
A/~
+
E/—\

—d= (P R(S)ds)

IN
=
~
~—
~
|l
=
+
<
=
o~
|
N
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If N(t —7)>1, by (1), N'(t) <0, thus

1 —exp (—ﬂ bt R(s)ds)

14vy Jt—71

N'(t) < R(t)N(t)

14 exp (_ }4_-51 tP_nT—T R(s)ds) .

If t € (pn — 7,pn), we have

1 —exp (—1;”1- bt R(s)ds)

1—v 14vy Jt—7

N'(t) < min{ R(t)N(t) 7o,

R(t)N(t)

(15)

1+exp (— sl R(s)ds)

1+vy Jt—71

Since 0 < 2 = (1 —v;1)/(1 4+ ;1) < 1, it follows from Lemma 1 that In2e~*(1=#/2)=1 >
—2x, and so 0 < —% In (26_96(1_96/2) - 1) < 2. There are two possibilities. First of all,
consider the case

Pn 1
/ R(s)ds < ——1In (26—1;0(1—1;0/2) — 1) =A<3+¢,
p

n=T Un

where vg = (1 —v1)/(1 + v1). Then
I N (py)

B /pn R(t) [1 — exp (—vo o R(s)ds)} »

e 14exp (—vo h R(s)ds)

_ /pn R(t) {1 — exp :—110 (f:_q_ r(s)ds — f;ﬂ_T R(s)ds)} }dt
pn—7  1+4exp {—vo (ﬁt_T R(s)ds — f;n_T R(s)ds)}

_ /pn R(t) {1 — exp :—vo (3 +e— f;n_T R(s)ds)} } dt

I 1+ exp {—vo (3 +e— f;ﬂ_T R(s)ds)}

— /pi: R(s)ds — %ln Lo {_vol(i :—iS—_‘rE{i:_T R(S)ds)} _

The function f(z) = z— (2In [1 + e~*13+=)]) /vy is increasing in [0, 3 +¢]. Thus, by
Lemmas 1 and 2, we have
| 4 e~0(B+e=4)

2

2 14 [2e7v0(1=%0/2) _ 1] emvo(+e=4)
= A4+ —In

Vo 1+ e—vo(3+e—A4)

2 Vo v}
< [ 1— _) % (3 4
= A+v0{v0( 5 +2(+€ )}

1- Yo —vo(1—v9/2)
= -2+ (4 + E)’UO — " In (26 0 0 _ 1)
0

S (2 + E)’Ul.
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Next, suppose
Dn
A< / R(s) <3 +e.

Pn—T

Choose &, € (pn — T, pn) such that

/pn R(s)ds = A.

n

Then by (15) and Lemma 1,

In N(pn)
< " R(s)ds + A A1 esp (o I RO)]
Pn—T n 1+ exp ( o R(s)ds)
. /En R(s)ds + /pn R(t) {1 — exp [—vo (3 +e— f;ﬂ_T R(s)ds)} } “
Pn—T &n 1+ exp [—vo (3 +e— f;n_T R(s)ds)}
= /& R(s)ds + /ph R(s)ds — 2m L+ exp {_UO (3 te—Jp Rls)d )}
Pn—T €n Yo 1+exp [—vo (3 +e— pn_T R(s)d )}
= [ R+ %m”e"p - (3+“f‘f: R(s)ds)|
Pn—T 1+exp[ Vo (3+5—f s)ds)}
< (B4 +(1—vp)A— %lnl—i—e#—f‘”o
= 2+ {@+e)vo - ! ;OUO In (26‘”0(1‘”0/2) ~ 1)
< (24 ¢€)vy,

where we have used the fact that the function

(:v)——zln 1+exp[—v1 (3+¢e—x)]
9w = v l4exp[-v1(B+e+ A—2x)

+ vz

is increasing on [0, 3 + ¢]. In either cases, we have proved that In N(p,) < (24 ¢)v; for
n=1,2,.... Letting n — co and € — 0, we have

—v

1
lnu§21 (16)

+v
Next, let {g,} be an increasing sequence such that g, > to + 7, lim, 00 g = +00,
N'(¢n) = 0 and lim, o N(¢,) = —v. By (1), N(g, —7) = 1. For ¢, — 7 < t < ¢y,
integrating (14) form ¢ — 7 to ¢, — 7, we have

1—uy [Pr7
V- <o (1t [ Rs) g - <t < g
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Substituting this into (1), if N(t — 7) > 1, we have
i 1-Nt—7) \°
M@ = rOND (1 TAONG - T)>
1-N({t—-71)
1+ A&)N(E—1)
1 —exp (—uo o R(s)ds)

1+ exp (—uo T R(s)ds)

t—7

> R(H)N(?)

v

R(tN(t)

for g, — 7 <t <gq,. If N(t —7) <1, then by (1), N’'(¢t) > 0, thus

1—exp (—uo T R(s)ds)

1+ exp (—uo o R(s)ds) 7
where ug = (1 —uy)/(1 + uy). Thus

1 —exp (—uo o R(s)ds)

_N'(t) < min { —R()N(t)uo, —R()N(t) (17)

1+ exp (—uo o R(s)ds)
for ¢, — 7 <t < q,. Noting that 0 < —ug < 1, one can easily see that
0< 1 In (26_“0(1_"0/2) — 1) < 3.
Ug
There are two cases to consider. In the first case,

dn 1
B = R(s)ds < (34+¢)+ —1In (2@_u0(1—u0/2) _ 1) _
ug

qn—T

By (17) and Lemma 1,

q'ﬂ
_ lnN(qn) < _UO/ R(S)dS < —(3 + E)UO —1In (26_u0(1—u0/2) _ 1)
q

n—T

< —(1+5)U0.

In the second case,

q’Vl
B </ R(s)ds <3 +e¢.

qn—T

We choose 1, € (¢n — 7, ¢n) such that B = fqi"_T R(s)ds. Then by (7) and Lemma 1,

—In N(Qn)

M an R(t) [exp (—uo [ R(s)ds) - 1}
< —uo/q R(s)ds + /nn I (_UO e R(s)ds) dt

n—T
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< —u / " R(s)ds + / " R — w0 (342~ fqtn—ftR(S)dS)} o
T n 1 +exp {—uo (3 Al R(s)ds)}
= —w [ Reys— [ R - 2 Ltop [ (e . Rie)ds)
gn—T n Y 1+ exp [—uo (3 +e— f;zl"_q_ R(s)ds)}
" u
= (1—uO)B—/nn R(s)ds+2(1—70)
_ [
+u30 . 1+exp [ Ug (3 +2€ fqn_T R(s)ds)}
< 2—(4+e)up+ 1 ;Ouo In (2€—u0(1—u0/2)—1)
< —(2+)uo,

where we have used the fact that

h(z) = —g — 2 LR (CU0B+e - 2))
Uup 2

is increasing on [0, 3+ ¢|. In either cases, we have proved that —In N(g,) < —(24¢)ug

forn =1,2,.... Letting n — oo and € — 0, we have
1—u

—Inv < -2 ) 18

nv < 29— (18)

Lety=—(1—u)/(14u) and 2 = (1—v)/(1+v), then in view of (16), (18) and Lemma
3, we get x = y = 0. This then shows that v = v = 1. The proof is complete.

By means of methods similar to those in the proof of Theorem 1, and by noting
that if A > 1, then (1—2)/(1+Xz) < (1—2)/(142z) forx < 1,and (1—2)/(14+Az) >
(1 =2)/(1+x) for x > 1, we may prove Theorem 2. The details are omitted.
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