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Abstract

In this short review, we present a concise summary of some of the results in
the book [1] “On the Accurate Distribution of Characteristic Roots and Stability
of Linear Delay Differential Systems” by the author. It is hoped that this note
will be useful for readers who are not familiar with the Chinese language used in

(1.

A basic functional differential equation is

2/ (t) + ax(t) + bx(t — 7) = 0, (1)

where a,b, 7 are constants, and 7 > 0. To find all the solutions of (1), we need its
characteristic equation

A a+be ™ =0. (2)

To this end, let us first consider the function
f(s) =se’, s € R. (3)

The properties of the smooth function f can be derived by elementary means. Roughly,
it is negative and decreasing on (—oo, —1). It is negative and increasing on (—1,0), and
it is positive and increasing on (0,00). Let us denote the restrictions of the function
f on (=00, —1), (=1,0) and (0,00) by fi(—cc,—1), fj(=1,0) and fj(0,00) respectively. Let
us further denote their inverses by Im_o,lm_; and Im4q respectively. The function
Im41 is increasing and continuously differentiable on its domain (0, 00), and its range
is (0,00). The function Im_ is increasing and continuously differentiable on (—e~*,0),
its range is (—1,0). The function Im_s is decreasing and continuously differentiable on
(—e™1,0), and its range is (—oo, —1). Furthermore, Im_5 < Im_; for x € (—e™1,0).
Consider the functions

F(z) = —x —tanz - Imy1(Bceosz), x € (0,7/2) U (7/2,7) 4)

Fi(x) = —x —tanz - Ilm_1(Bcosz), © € (0,7/2) U (7/2, ) (5)
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Fy(x) = —x —tanx - Im_s(Bcosx), x € (0,7/2) U (7/2,7) (6)

where B is a constant. For the sake of convenience, for a given constant B, we set
B} = — arccos L +/(Be)? —
* Be

whenever it is defined. If B < —e™!, then 0 < —1/Be < 1; and if B > e~!, then
—1< —=1/Be < 0.

The function F', defined by (4), has a unique inverse. Let it be denoted by = =
04+ (y, B). When B > 0, 04 (y, B) is decreasing in (—7/2— B, 0) and its range is (0, 7/2).
When B < 0, 4 (y, B) is increasing in (—m, —7/2 — B) and its range is (7/2, 7).

The function Fy, defined by (5), has a unique inverse. Let it be denoted by x =
0_1(y,B). When B < —e™!, §_1(y, B) is decreasing in (—7/2— B, B} ) and its range is
(arccos(—1/Be), w/2). When —e_l < B <0, 0_1(y, B) is decreasing in (—7/2 — B, 0)
and its range is (0, 7/2). When 0 < B < e~!, 0_1(y, B) is decreasing in (-7, —7/2— B)
and its range is (7/2,7). When B > e~ ! 9 1(y, B) is decreasing in (B*,—7/2 — B)
and its range is (7/2, arccos(—1/Be)).

The function Fs, defined by (6), has a unique inverse. Let it be denoted by x =
0_5(y,B). When B < —e™!, 0_5(y, B) is increasing in (B, +o00) and its range is
(arccos(—1/Be),m/2). When —e~! < B < 0, 6_5(y, B) is increasing in (0, +o0) and
its range is (0,7/2). When 0 < B < e~!, 0_5(y, B) is increasing in (—oo, —) and its
range is (m/2,7). When B > e™1, _5(y, B) is increasing in (—oo, B*) and its range is
(w/2,arccos(—1/Be)).

n (3), let
1
A=—a+ =5, (7)
T
then (2) becomes
Se¥ = A, (8)
where
A = —7be® 9)

To simplify matters, let us set

0% = 0i(jm, C),

wkc—JW"‘@ka

) _ 1
¢(3—1,—2),C = jm + arccos (C’(jﬂ)ﬁ)

and
@,&JC = lmk(C’cosG o)

The following facts hold for the real roots of (2):
e (I) If b < 0, then (2) has a unique simple real oot A\; = —a + ZlmA.

e (II) If b = 0, then (2) has a unique simple real root Ay = —a.



42 Functional Differential Equation

e IIIfO<b< 2 e~(@™+1) then (2) has only two simple real roots A3 = —a +
Lim_ 1A Ay = —a+ Lim_ LA,

o (IV) If b= 2e=(@+D then (2) has a double root A5 = —(a + ).

o (V)Ifb> %e_(‘”“), then (2) has no real roots.
The following facts hold for the pur complex roots of (8):

(I) If 0 < A < e™!, then all the pure complex roots of (8) are given by

(1%) (2m+1) (2m+1)
Somt1 =¢ P24 ¢2 A’L

form=0,1,2,---, where 9(_22771;11) € (0,7/2).

(IT) If e=! < A < 37/2, then all the pure complex roots of (8) are given by
(2m+1) 4 ¢(2m+1)

P2 _4 i, 2m+D7m>(— A)i
S = 1 i¢(2m+l) b Cmalm=(—A)
90(_2{’?1) 1yl < @mt D < (—A))
for m = 05 15 27 B where 9(2m+1) 9_227n+f11 aI‘CCOS (AL) %
e (IIT) If A = 37/2, then all the pure complex roots of (8) are given by
PO i, (2m o+ D > (-A))
S _ 1) i @m+)r = (-A))
so(f{”_“ + ¢‘2{"_+j) i, 31 < (2m+ Dr < (~4)]
i%ﬂl 2m+)r=m
for m=0,1,2,---

, where 9(2m+j), 6 2m+1) € (arccos (4

) %)

(IV) If A > 37/2, then all the pure complex roots of (8) are given by

SIA VST (G e > (-A)
glE) _(12:@::?) iTtl%%ﬁfli). (QT + U= A *
a1 = @ ) YT TV 5 A< (2m+ D < (—A)L
= ((2m+1)7r+ ZVi, 2m+1)r=-Z+A
gofirfl :twf{n_ﬁ), T<(2m+)r < -5+ A
form =0,1,2,---, where 6 2m+1) z

") € (%, m)and 0 2m+1}1),9(2m+1}1) € (arccos (4=),5)
(V) If —e=! < A < 0, then all the pure complex roots of (8) are given by

S0 _ <_2”7;>1 + %ﬁ(_Qﬂﬁ m=1,2, -

where 9(_2;731 € (0,%).
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o (VI) If —1/2 < A < —e™!, then all the pure complex roots of (8) are given by

O £ BNi,  2mm > Ay
SR = g i¢<2m) )Az (2m + )7 = A%

P £ 0 < 2mm < A%

for m=0,1,2,---, where 9(21”21,9 2 A € (arccos ( ﬁ) 3.

e (VII) If A = —n/2, then all the pure complex roots of (8) are given by

B £ @i, 2mr > AL
2m N
535 _ 1i¢( L oyal (2mt D)= A%
- wf{fLAz', 0 < 2mm < A7,
+351, 2mm =0
for m = 0,1,2,---, where %"}, 6%} € (arccos (~4) . 5).

o (VIII) If A < —m/2, then all the pure complex roots of (8) are given by

go(QQm):lzw 2A', 2mm > A%

—1i¢(2m) pyal (2m4 1T = A%

4+
Sém): so‘fi’f/liw%', —Z - A<2mmw < AL
:|:(2m7r—|— ) 2mm = -5 — A
flﬂii%ﬁfﬂ, 0<2mm < -5 — A
form =0,1,2,---, where Gflm,zx € (m/2,m), 0 _2{721,9_214 € (arccos (—4=) , 5).

From the previous results, we obtain all the roots of (2) as follows:

e (I) If b = 0, then (2) has a unique root A\g = —a.

o (II) If —Le=(e+) < b < 0, then the roots of (2) are )\61) = —a+ 1lm A,
1+ 1+)
Moy = —a+ 285201, m=0,1,2,--
o (II)If —3Ze~9" < b < —Le=(a7+1) then the roots of (2) are /\Ef) = —a+21im A,
and Aéﬁ,ﬁl = 1523,321, =0,1,2,--

. ( ) If b= —3Ze=7 then the roots of (2) are /\((J?’) =—a+21lm; A, and )\é?::ltll =
+1888) m=0,1,2,--.

(44)

o ( ) If b < —3Ze=97  then the roots of (2) are /\84) =—a+2lmiA and Ay, =

P8 = 01,2,

o (VI)If 0 < b < Le=(@7+D  then the roots of (2) are /\811) =—a+Lilm_ A, /\812) =
—a—i—llm 2 A, and)\(li) — lSli) =1,2,---

om > M
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o (VII) If b = Le=(a7+1) then the roots of (2) are the double root )\é})) =—(a+1),
andxgij): Sg}j, =1,2,---.

e (VIII) If %e_(‘”H) < b < g-e7%7, then the roots of (2) are )\gff) = —a+
1585 m=0,1,2,-.

o (IX) If b = 5=e~%7, then the roots of (2) are /\gfni) = Sé‘:’ic)7 =0,1,2,---.

o (X)Ifb> g=e 7, then the roots of (2) are )\gfni) = Séiic% =0,1,2,---.

Next, we consider (1) under the initial condition
ZC(G) = ¢(9)7 AS [_Ta 0]7 (10)

when ¢(0) € C[—7,0], the initial value problem (1) and (10) possesses the unique

solution 0

2(t) = X()(0) +b [ X(t—0—7)p(0)do, (11)

—T

where X () is the solution of the following initial value problem

{ o' (t) + ax(t) + ba(t —7) = 0,
z(0) = H(0), 0 € (—00, +00),

which is called the fundamental solution of (1), where H(0) is the Heaviside function,
that is,
1, 6>0

H(G)_{ 0, <0

In view of (11), we can find series expansions of the solutions of the problem (1)
and (10). To simplify matters, let us set

1+ Imy (C’ cos 9,&7))

(b,(j)c = arctan

)

jﬂ'—l—@,gj)

and

exp { (o 1) o [20i2 + o]

e ee] + ]

The following facts hold for the solutions of (1):

Iy (t) =

o (I) If —Le~(@™+1) < p < 0, then the fundamental solution of (1) is

_exp {( a+ —lm+A 2m+1
X = 1+ImiA 2 Z Lt
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o (II) If —3Ze97 < b < —Le=(@+1) then the fundamental solution of (1) is

_exp { (—a + %lm+A) t} (2m+1) 2m+1)
X(t) = T A + 209%(,4) rt )+ 2M§A) ¢

where k(A) = —1 + 5=(—A)}.

o (II) If b = —2Z¢=7, then the fundamental solution of (1) is

© —a+2lmy )t ,cos 3Tt 4 3% gin 31¢
X)) = XP{( a T”;:z) }+26 5 sin
L+1Imy = 1t (37”)
2m+1 2m—+1
D DR OREED DI 1)
1<m<k(77") m>k(377“
where k(%”) - _% + %(_3%)1

e (IV) If b < —3Ze", then the fundamental solution of (1) is

exp {(—a+ Lim, A)t}

T 2m—+1
X(t) = etz >, e
+ 0<m<ki(A)
+2 0 > w2 > 18l
k1(A)<m<k(A) m>k(A)

where ky(A) = =3 + 4 k(A) = -1+ L(-A)1.

o (V)If0 < b< Lem(@+D then the fundamental solution of (1) is

X(t) = exp{(—a + %lm_lA) t} N exp{( a+ —lm 2A 49 Z G 2m)
1+Im_1A 14+1Im_qA
o (VI) If b = 2e=(@7+1) then the fundamental solution of (1) is

1 ¢ m
X(t):2<§+;> exp{(—a—i— ) }+22j1“<_22}1
o (VII) If Le=(@7+1) < p < Ze=97, then the fundamental solution of (1) is

Xt=2 > H+2 Y TE@).

ogmgk(A) m>k(A)

where k(A) = 5= A%
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e (VII) If b = g=e™°7, then the fundamental solution of (1) is

+2 Y H+2 Y e,

L+ (5) 1§m§k(A) m>k(A)

X(t) = ge—at cos o=t + 5 sin 5t

where k(A) = =A%

o (IX) If b > e, then the fundamental solution of (1) is

2m 2m
Xty=2 Y r@&um+2 > H+2 > T @),
0<m<k1(A) k1 (A)<m<k(A) m>k(A)
where k1 (A) = —1 — & k(A) = £ A%
As our final remark, it is well known that (1) is asymptotically stable if, and only
if, the roots of the characteristic equation (2) are in the left half-plane. Since we have
found all the roots of (2), the asymptotic stability of (1) can thus be decided. However,

we will not give the corresponding criteria since they have already given in a number
of places (see e.g. [2, Appendix]).
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