Some Results for Generalized Lie Ideals in Prime Rings with Derivation II *

Kâzım Kaya[†], Öznur Gölbaşi[‡], Neşet Aydin[§]

Received 18 December 2000

Abstract

Let R be a prime ring of characteristic different from two, $d: R \to R$ a nonzero derivation, and M a non-zero left ideal of R. We prove the following results: (1) if $a \in R$ and $[d(R), a]_{\sigma,\tau} = 0$, then $\sigma(a) + \tau(a) \in Z$, the center of R, (2) if $d([R, a]_{\sigma,\tau}) = 0$, then $\sigma(a) + \tau(a) \in Z$, (3) if $([R, M]_{\sigma,\tau}, a)_{\sigma,\tau} = 0$, then $a \in Z$, (4) (d(R), a) = 0 if, and only if, d((R, a)) = 0.

Let R be a ring and σ, τ be two mappings from R into itself. We write $[x, y], (x, y), [x, y]_{\sigma,\tau}, (x, y)_{\sigma,\tau}$ for $xy - yx, xy + yx, x\sigma(y) - \tau(y)x$ and $x\sigma(y) + \tau(y)x$ respectively, and will make extensive use of the following basic commutator identities: $(xy, z) = x[y, z] + (x, z)y = x(y, z) - [x, z]y, [xy, z]_{\sigma,\tau} = x[y, z]_{\sigma,\tau} + [x, \tau(z)]y = x[y, \sigma(z)] + [x, z]_{\sigma,\tau}y$.

An additive mapping $D: R \to R$ is called a derivation if D(xy) = D(x)y + xD(y)holds for all $x, y \in R$. A derivation D is inner if there exists an $a \in R$ such that D(x) = [a, x] for all $x \in R$. For subsets $A, B \subset R$, let [A, B] $([A, B]_{\sigma,\tau})$ be the additive subgroup generated by all [a, b] $([a, b]_{\sigma,\tau})$ for all $a \in A$ and $b \in B$. We recall that a Lie ideal L is an additive subgroup of R such that $[R, L] \subset L$. We first introduce the generalized Lie ideal in [4] as following. Let U be an additive subgroup of R, and let $\sigma, \tau : R \to R$ be two mappings. Then (i) U is a (σ, τ) -right Lie ideal of R if $[U, R]_{\sigma,\tau} \subset U$, (ii) U is a (σ, τ) -left Lie ideal of R if $[R, U]_{\sigma,\tau} \subset U$, (iii) if U is both a (σ, τ) -right Lie ideal and (σ, τ) -left Lie ideal of R, then U is a (σ, τ) -Lie ideal of R. Every Lie ideal of R is a (1, 1)-Lie ideal of R, where $1: R \to R$ is the identity map. As an example, let I be the set of integers,

$$R = \left\{ \left(\begin{array}{cc} x & y \\ z & t \end{array} \right) : x, y, z, t \in I \right\},$$
$$U = \left\{ \left(\begin{array}{cc} x & y \\ 0 & x \end{array} \right) : x, y \in I \right\} \subset R,$$

and $\tau: R \to R$ the mapping defined by $\tau(x) = bxb$, where $b = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} \in R$. Then U is a $(1, \tau)$ -left Lie ideal but not a Lie ideal of R.

^{*}Mathematics Subject Classifications: 16N10, 16W25, 16U80.

[†]Canakkale Onsekiz mart Univ., Math. Department, Canakkale, Turkey

[‡]Cumhuriyet Univ., Math. Department, 58140 Sivas, Turkey

[§]Mersin Univ., Math. Department, 33342 Mersin, Turkey

Kaya et al.

Some algebraic properties of (σ, τ) -Lie ideals are considered in [1], [2] and [5], where further references can be found.

Let R be a prime ring of characteristic different from two, $d : R \to R$ a nonzero derivation, Z the center of R and $a \in R$. Lee and Lee in [6] proved that if $[d(R), d(R)] \subset Z$, then R is commutative. In the present paper, we generalize this result for generalized Lie ideal. In [3], Herstein proved that in a prime ring of characteristic different from two, [d(R), a] = 0 implies $a \in Z$. We shall extend Herstein's theorem by proving that $[d(R), a]_{\sigma,\tau} = 0$ implies $\sigma(a) + \tau(a) \in Z$.

Throughout this note, R will be a prime ring with characteristic different from 2, Z the center of R, d a non-zero derivation of R and U is (σ, τ) -left Lie ideal of R.

LEMMA 1. If $a \in R$ and $[d(R), a]_{\sigma,\tau} = 0$, then $\sigma(a) + \tau(a) \in Z$.

PROOF. If $a \in Z$ then the proof of the theorem is obvious. So we assume that $a \notin Z$. By hypothesis, we have for all $x \in R$,

$$0 = [d(x\sigma(a)), a]_{\sigma,\tau} = [d(x)\sigma(a) + xd(\sigma(a)), a]_{\sigma,\tau}$$

= $d(x)[\sigma(a), \sigma(a)] + [d(x), a]_{\sigma,\tau}\sigma(a) + x[d(\sigma(a)), a]_{\sigma,\tau} + [x, \tau(a)]d(\sigma(a)).$

Hence we obtain

$$[x,\tau(a)]d(\sigma(a)) = 0, \ x \in R \tag{1}$$

Replacing x by $xy, y \in R$ in (1) and using (1), we get

$$[R, \tau(a)]Rd(\sigma(a)) = 0.$$

Since R is prime ring and $a \notin Z$, we obtain $d(\sigma(a)) = 0$. Now let us consider the following mappings on $R: D(x) = [x, \sigma(a)]$ and $H(x) = [x, a]_{\sigma,\tau}$, where D is a non-zero derivation of R such that Hd(x) = 0. For any $x, y \in R$, we have $H(xy) = [xy, a]_{\sigma,\tau} = x[y, \sigma(a)] + [x, a]_{\sigma,\tau}y$. Hence we get

$$H(xy) = H(x)y + xD(y)$$
⁽²⁾

But this can also be calculated in a different way. Indeed, $H(xy) = [xy, a]_{\sigma,\tau} = x[y, a]_{\sigma,\tau} + [x, \tau(a)]y$ and so one obtains

$$H(xy) = [x, \tau(a)]y + xH(y)$$
(3)

For any $r \in R$, $0 = [d(r), a]_{\sigma,\tau} = d(r)\sigma(a) - \tau(a)d(r)$, and so,

$$\begin{aligned} 0 &= d(0) = d(d(r)\sigma(a) - \tau(a)d(r)) \\ &= d^2(r)\sigma(a) + d(r)d(\sigma(a)) - d(\tau(a))d(r) - \tau(a)d^2(r) \\ &\quad [d^2(r), a]_{\sigma,\tau} - d(\tau(a))d(r). \end{aligned}$$

This implies that $d(\tau(a))d(r) = 0$ for all $r \in R$. Using [7, Lemma 1], we obtain $d(\tau(a)) = 0$. On the other hand, for any $x \in R$,

$$dH(x) = d([x, a]_{\sigma, \tau}) = d(x\sigma(a) - \tau(a)x) = d(x)\sigma(a) + xd(\sigma(a)) - d(\tau(a))x - \tau(a)d(x) = [d(x), a]_{\sigma, \tau} = 0.$$

Thus we get,

$$dH(R) = 0. (4)$$

In view of (2), (3) and (4), one obtains, for any $x, y \in R$,

and so, d(R)DH(R) = 0. By using [7, Lemma 1] we arrive at

$$DH(x) = 0.$$

That is,

$$[[x,a]_{\sigma,\tau},\sigma(a)] = 0, \ x \in R.$$
(5)

Taking $\tau(a)x$, instead of x in (5), we get

$$\begin{aligned} 0 &= & [[\tau(a)x, a]_{\sigma, \tau}, \sigma(a)] = [\tau(a)[x, a]_{\sigma, \tau} + [\tau(a), \tau(a)]x, \sigma(a)] \\ &= & [\tau(a)[x, a]_{\sigma, \tau}, \sigma(a)] = \tau(a)[x, a]_{\sigma, \tau}, \sigma(a)] + [\tau(a), \sigma(a)][x, a]_{\sigma, \tau}, \end{aligned}$$

and so,

$$[\tau(a), \sigma(a)][x, a]_{\sigma,\tau} = 0, \ x \in R.$$
(6)

Replacing x by $xy, y \in R$ in (6) and using (6), we obtain

$$[\tau(a), \sigma(a)]R[R, \sigma(a)] = 0.$$

Since R is a prime ring and $a \notin Z$, we get

$$[\tau(a), \sigma(a)] = 0. \tag{7}$$

Now, expanding (5) and using (7) one obtains

$$0 = [[x, a]_{\sigma, \tau}, \sigma(a)] = [x\sigma(a) - \tau(a)x, \sigma(a)] = [x, \sigma(a)]\sigma(a) - \tau(a)[x, \sigma(a)] = [[x, \sigma(a)], a]_{\sigma, \tau},$$

that is,

$$HD(x) = 0, \ x \in R. \tag{8}$$

Linearizing (8), we get

$$\begin{array}{lll} 0 &=& HD(xy) = H(D(x)y + xD(y)) \\ &=& HD(x)y + D(x)D(y) + xHD(y) + [x,\tau(a)]D(y) \\ &=& D(x)D(y) + [x,\tau(a)]D(y) = [x,\sigma(a)]D(y) + [x,\tau(a)]D(y), \end{array}$$

that is,

$$[x,\sigma(a) + \tau(a)]D(y) = 0, \ x, y \in R$$

Since D is a non-zero derivation of the prime ring R, using [7, Lemma 1], we obtain $\sigma(a) + \tau(a) \in \mathbb{Z}$.

26

Kaya et al.

COROLLARY 2. Let R be a prime ring of characteristic different from two, d be a nonzero derivation of R and U is (σ, τ) -left Lie ideal of R. If $[d(R), U]_{\sigma, \tau} = 0$, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

THEOREM 3. Let R be a prime ring of characteristic different from two, d a nonzero derivation of R and $a \in R$. If $d([R, a]_{\sigma,\tau}) = 0$, then $\sigma(a) + \tau(a) \in Z$.

PROOF. For all $r \in R$,

$$0 = d([\tau(a)r, a]_{\sigma, \tau}) = d(\tau(a)[r, a]_{\sigma, \tau}) = d(\tau(a))[r, a]_{\sigma, \tau} + \tau(a)d([r, a]_{\sigma, \tau})$$

and so,

$$d(\tau(a))[r,a]_{\sigma,\tau} = 0, \ r \in R.$$

$$\tag{9}$$

Taking $rs, s \in R$ instead of r in (9), we have

$$0 = d(\tau(a))[rs, a]_{\sigma,\tau} = d(\tau(a))r[s, \sigma(a)] + d(\tau(a))[r, a]_{\sigma,\tau}s.$$

Using (9), we get

$$d(\tau(a))R[R,\sigma(a)] = 0$$

Since R is a prime ring, we see that $d(\tau(a)) = 0$ or $a \in Z$. If $a \in Z$, then $\sigma(a) + \tau(a) \in Z$. The proof is then complete. Therefore, let us assume that $a \notin Z$. For $r \in R$,

$$0 = d([r\sigma(a), a]_{\sigma,\tau}) = d([r, a]_{\sigma,\tau}\sigma(a))$$
$$= d([r, a]_{\sigma,\tau})\sigma(a) + [r, a]_{\sigma,\tau}d(\sigma(a))$$

and so,

$$[r,a]_{\sigma,\tau}d(\sigma(a)) = 0, \ r \in R.$$
(10)

Replacing r by $rs, s \in R$ in (10), we get

$$0 = [rs, a]_{\sigma,\tau} d(\sigma(a)) = r[s, a]_{\sigma,\tau} d(\sigma(a)) + [r, \tau(a)] s d(\sigma(a))$$
$$= [r, \tau(a)] s d(\sigma(a)).$$

That is,

$$[r, \tau(a)]Rd(\sigma(a)) = 0, \ r \in R$$

Since R is a prime ring, and since we have assumed that $a \notin Z$, we obtain

$$d(\sigma(a)) = 0.$$

Now, from our hypothesis, we have, for any $r \in R$,

$$0 = d([r, a]_{\sigma, \tau}) = d(r\sigma(a) - \tau(a)r)$$

= $d(r)\sigma(a) + rd(\sigma(a)) - d(\tau(a))r - \tau(a)d(r).$

Since $d(\sigma(a)) = 0$ and $d(\tau(a)) = 0$, we get

$$[d(r), a]_{\sigma,\tau} = 0, \ r \in R.$$

By Lemma 1, we have $\sigma(a) + \tau(a) \in \mathbb{Z}$.

COROLLARY 4. Let R be a prime ring of characteristic different from two, d a nonzero derivation of R and U is (σ, τ) -left Lie ideal of R. If $d([R, U]_{\sigma, \tau}) = 0$, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

EXAMPLE. Let

$$R = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : a, b, c, d \in I \right\}$$

and

$$\sigma \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} d & -c \\ -b & a \end{array}\right), \tau \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} a & -b \\ -c & d \end{array}\right)$$

be two automorphisms of R and $a = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \notin Z$. If we define $d : R \to R$ by $d \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & -b \\ c & 0 \end{pmatrix}$, then d is a derivation of R such that $d([R, a]_{\sigma, \tau}) = 0$, but $\sigma(a) + \tau(a) \in Z$.

THEOREM 6. Let R be a prime ring of characteristic different from two, M a non-zero ideal of R and $a \in R$. If $([R, M]_{\sigma,\tau}, a)_{\sigma,\tau} = 0$, then $a \in Z$.

PROOF. Let *m* be a noncentral element of *M*. Consider the following mappings on $R: d_1(r) = [r, m]_{\sigma,\tau}$ and $d_2(r) = (r, a)_{\sigma,\tau}$. Then for any $r \in R$, we have $d_2d_1(r) = d_2([r, m]_{\sigma,\tau}) = ([r, m]_{\sigma,\tau}, a)_{\sigma,\tau} = 0$. That is,

$$d_2 d_1(r) = 0, \ r \in R. \tag{11}$$

For $r \in R$,

$$d_1(r\sigma(m)) = [r\sigma(m), m]_{\sigma,\tau}$$

= $r[\sigma(m), \sigma(m)] + [r, m]_{\sigma,\tau}\sigma(m) = d_1(r)\sigma(m),$

and so we get,

$$d_1(r\sigma(m)) = d_1(r)\sigma(m), \ r \in R.$$
(12)

Let us consider (11) together with (12), we obtain

$$0 = d_2 d_1(r\sigma(m)) = d_2(d_1(r)\sigma(m)) = (d_1(r)\sigma(m), a)_{\sigma,\tau} = d_1(r)[\sigma(m), \sigma(a)] + (d_1(r), a)_{\sigma,\tau}\sigma(m),$$

and so we have

$$d_1(R)[\sigma(m), \sigma(a)] = 0. \tag{13}$$

Putting in (13) $rs, s \in R$ for r we obtain

$$0 = d_1(rs)[\sigma(m), \sigma(a)] = rd_1(s)[\sigma(m), \sigma(a)] + [r, \tau(m)]s[\sigma(m), \sigma(a)]$$

and using (13) we get

$$[r, \tau(m)]R[\sigma(m), \sigma(a)] = 0, \ r \in R.$$

Since R is a prime ring, we have $m \in Z$ or $\sigma([m, a]) = 0$. If $m \in Z$, then $\sigma([m, a]) = 0$. That is, [M, a] = 0 since σ is automorphism of R. For all $x \in R$ and $m \in M$, 0 = Kaya et al.

[xm, a] = x[m, a] + [x, a]m = [x, a]m. That is, [x, a]RM = (0), the zero ideal of R. By the primeness of R we have $a \in Z$.

THEOREM 7. Let R be a prime ring of characteristic different from two, d is a nonzero derivation of R and $a \in R$. Then (d(R), a) = 0 if, and only if, d((R, a)) = 0.

PROOF. Suppose (d(R), a) = 0. In this case we claim that d(a) = 0. If a = 0 then d(a) = 0. So we assume that $a \neq 0$. For any $x \in R$, the relation (d(x), a) = 0 gives

$$0 = (d(xa), a) = (d(x)a + xd(a), a) = d(x)[a, a] + (d(x), a)a + x(d(a), a) - [x, a]d(a)$$
(14)

and so,

$$[x, a]d(a) = 0, \ x \in R.$$
(15)

If we take $xy, y \in R$ instead of x in (15), we obtain

$$[R,a]Rd(a) = (0).$$

Since R is a prime ring we have $a \in Z$ or d(a) = 0. Now, if $a \in Z$ then 0 = (d(a), a) = d(a)a + ad(a) = 2d(a)a. Then d(a)a = 0. Since we assumed that $0 \neq a$ and R is a prime ring, we get d(a) = 0. Thus, we conclude that d(a) = 0. Hence for any $r \in R$ we have d((r, a)) = (d(r), a) + (r, d(a)), and so, d((R, a)) = 0. Conversely, for $x \in R$,

$$0 = d((ax, a)) = d(a(x, a) + [a, a]x)$$

= $d(a(x, a)) = d(a)(x, a) + ad((x, a)).$

Hence we have

$$d(a)(x,a) = 0, \ x \in R.$$
 (16)

In (16) replace x by xy and use (16), we get

$$0 = d(a)(xy, a) = d(a)x[y, a] + d(a)(x, a)y = d(a)x[y, a],$$

that is, d(a)R[R, a] = 0. Since R is a prime ring, we have d(a) = 0 or $a \in Z$. If d(a) = 0, then for any $r \in R$ we have 0 = d((r, a)) = (d(r), a) + (r, d(a)) = (d(r), a), and so (d(R), a) = 0. If $a \in Z$, then 0 = d((a, a)) = 4d(a)a. Since the characteristic of R is different from 2, d(a)a = 0. Since $a \in Z$, we get d(a)Ra = 0, and so, d(a) = 0 or a = 0. Thus, d(a) = 0 is obtained. Finally, (d(R), a) = 0 as required.

References

- [1] N. Aydın and H. Kandamar, (σ, τ) -Lie ideals in prime rings, Doğa Tr. J. of Math., 18(2)(1994), 143-148.
- [2] N. Aydın and M. Soytürk, (σ, τ)-Lie ideals in prime rings with derivations, Doğa Tr. J. of Math., 19(1993), 239-244.
- [3] I. N. Herstein, A note on derivations II, Canad. Math. Bull., 22(4)(1979), 509-511.
- [4] K. Kaya, (σ, τ)-Lie ideals in prime rings, An. Univ. Timisoara Stiinte Math., 30(2-3)(1992), 251-255.

- [5] K. Kaya and N. Aydın, Some results in generalized Lie ideal, Albasapr Sci. J. Issued by Jordan University for Woman, 3(1)(1999), 53-61.
- [6] P. H. Lee and T. K. Lee, On derivations of prime rings, Chinese J. Math., 9(2)(1981), 107-110.
- [7] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8(1957), 1093-1100.