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Abstract

Let R be a prime ring of characteristic di®erent from two, d : R ! R a non-
zero derivation, and M a non-zero left ideal of R:We prove the following results:
(1) if a 2 R and [d(R); a]¾ ;¿ = 0; then ¾ (a) + ¿(a) 2 Z; the center of R; (2) if
d([R; a]¾ ;¿ ) = 0; then ¾ (a)+ ¿(a) 2 Z; (3) if ([R;M ]¾ ;¿ ; a)¾ ;¿ = 0; then a 2 Z; (4)
(d(R); a) = 0 if, and only if, d((R; a)) = 0:

Let R be a ring and ¾; ¿ be two mappings from R into itself. We write [x; y]; (x; y);
[x; y]¾ ;¿ ; (x; y)¾ ;¿ for xy¡ yx; xy+yx; x¾(y)¡ ¿(y)x and x¾(y)+¿(y)x respectively, and
will make extensive use of the following basic commutator identities: (xy; z) = x[y; z]+
(x; z)y = x(y; z) ¡ [x; z]y; [xy; z]¾ ;¿ = x[y; z]¾ ;¿ + [x; ¿(z)]y = x[y; ¾(z)] + [x; z]¾ ;¿ y.

An additive mapping D : R ! R is called a derivation if D(xy) = D(x)y + xD(y)
holds for all x; y 2 R. A derivation D is inner if there exists an a 2 R such that
D(x) = [a; x] for all x 2 R: For subsets A; B ½ R; let [A; B] ([A; B]¾ ;¿ ) be the additive
subgroup generated by all [a; b] ([a; b]¾ ;¿ ) for all a 2 A and b 2 B: We recall that
a Lie ideal L is an additive subgroup of R such that [R; L] ½ L: We ¯rst introduce
the generalized Lie ideal in [4] as following. Let U be an additive subgroup of R,
and let ¾; ¿ : R ! R be two mappings. Then (i) U is a (¾; ¿)-right Lie ideal of R if
[U;R]¾ ;¿ ½ U; (ii) U is a (¾; ¿)-left Lie ideal of R if [R; U ]¾ ;¿ ½ U; (iii) if U is both
a (¾; ¿)-right Lie ideal and (¾; ¿)-left Lie ideal of R; then U is a (¾; ¿)-Lie ideal of R:
Every Lie ideal of R is a (1; 1)-Lie ideal of R; where 1 : R ! R is the identity map. As
an example, let I be the set of integers,

R =

½ µ
x y
z t

¶
: x; y; z; t 2 I

¾
;

U =

½ µ
x y
0 x

¶
: x; y 2 I

¾
½ R;

and ¿ : R ! R the mapping de¯ned by ¿(x) = bxb, where b =

µ
1 ¡ 1
0 ¡ 1

¶
2 R. Then

U is a (1; ¿)-left Lie ideal but not a Lie ideal of R:
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Some algebraic properties of (¾; ¿)-Lie ideals are considered in [1], [2] and [5], where
further references can be found.

Let R be a prime ring of characteristic di®erent from two, d : R ! R a nonzero
derivation, Z the center of R and a 2 R. Lee and Lee in [6] proved that if [d(R); d(R)] ½
Z; then R is commutative. In the present paper, we generalize this result for generalized
Lie ideal. In [3], Herstein proved that in a prime ring of characteristic di®erent from
two, [d(R); a] = 0 implies a 2 Z: We shall extend Herstein's theorem by proving that
[d(R); a]¾ ;¿ = 0 implies ¾(a) + ¿(a) 2 Z:

Throughout this note, R will be a prime ring with characteristic di®erent from 2,
Z the center of R; d a non-zero derivation of R and U is (¾; ¿)-left Lie ideal of R.

LEMMA 1. If a 2 R and [d(R); a]¾ ;¿ = 0; then ¾(a) + ¿(a) 2 Z:

PROOF. If a 2 Z then the proof of the theorem is obvious. So we assume that
a =2 Z: By hypothesis, we have for all x 2 R,

0 = [d(x¾(a)); a]¾ ;¿ = [d(x)¾(a) + xd(¾(a)); a]¾ ;¿

= d(x)[¾(a); ¾(a)] + [d(x); a]¾ ;¿ ¾(a) + x[d(¾(a)); a]¾ ;¿ + [x; ¿(a)]d(¾(a)):

Hence we obtain
[x; ¿(a)]d(¾(a)) = 0; x 2 R (1)

Replacing x by xy; y 2 R in (1) and using (1), we get

[R; ¿(a)]Rd(¾(a)) = 0:

Since R is prime ring and a =2 Z, we obtain d(¾(a)) = 0: Now let us consider the
following mappings on R : D(x) = [x; ¾(a)] and H(x) = [x; a]¾ ;¿ ; where D is a non-zero
derivation of R such that Hd(x) = 0: For any x; y 2 R; we have H(xy) = [xy; a]¾ ;¿ =
x[y; ¾(a)] + [x; a]¾ ;¿ y: Hence we get

H(xy) = H(x)y + xD(y) (2)

But this can also be calculated in a di®erent way. Indeed, H(xy) = [xy; a]¾ ;¿ =
x[y; a]¾ ;¿ + [x; ¿(a)]y and so one obtains

H(xy) = [x; ¿(a)]y + xH(y) (3)

For any r 2 R; 0 = [d(r); a]¾ ;¿ = d(r)¾(a) ¡ ¿(a)d(r); and so,

0 = d(0) = d(d(r)¾(a) ¡ ¿(a)d(r))

= d2(r)¾(a) + d(r)d(¾(a)) ¡ d(¿(a))d(r) ¡ ¿(a)d2(r)

[d2(r); a]¾ ;¿ ¡ d(¿(a))d(r):

This implies that d(¿(a))d(r) = 0 for all r 2 R: Using [7, Lemma 1], we obtain d(¿(a)) =
0: On the other hand, for any x 2 R;

dH(x) = d([x; a]¾ ;¿ ) = d(x¾(a) ¡ ¿(a)x)

= d(x)¾(a) + xd(¾(a)) ¡ d(¿(a))x ¡ ¿(a)d(x) = [d(x); a]¾ ;¿ = 0:
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Thus we get,
dH(R) = 0: (4)

In view of (2), (3) and (4), one obtains, for any x; y 2 R;

0 = Hd(xH(y)) = H(d(x)H(y) + xdH(y)) = H(d(x)H(y))

= Hd(x)H(y) + d(x)DH(y) = d(x)DH(y);

and so, d(R)DH(R) = 0: By using [7, Lemma 1] we arrive at

DH(x) = 0:

That is,
[[x; a]¾ ;¿ ; ¾(a)] = 0; x 2 R: (5)

Taking ¿(a)x; instead of x in (5), we get

0 = [[¿(a)x; a]¾ ;¿ ; ¾(a)] = [¿(a)[x; a]¾ ;¿ + [¿(a); ¿(a)]x; ¾(a)]

= [¿(a)[x; a]¾ ;¿ ; ¾(a)] = ¿(a)[x; a]¾ ;¿ ; ¾(a)] + [¿(a); ¾(a)][x; a]¾ ;¿ ;

and so,
[¿(a); ¾(a)][x; a]¾ ;¿ = 0; x 2 R: (6)

Replacing x by xy; y 2 R in (6) and using (6), we obtain

[¿(a); ¾(a)]R[R; ¾(a)] = 0:

Since R is a prime ring and a =2 Z, we get

[¿(a); ¾(a)] = 0: (7)

Now, expanding (5) and using (7) one obtains

0 = [[x; a]¾ ;¿ ; ¾(a)] = [x¾(a) ¡ ¿(a)x; ¾(a)]

= [x; ¾(a)]¾(a) ¡ ¿(a)[x; ¾(a)] = [[x; ¾(a)]; a]¾;¿ ;

that is,
HD(x) = 0; x 2 R: (8)

Linearizing (8), we get

0 = HD(xy) = H(D(x)y + xD(y))

= HD(x)y + D(x)D(y) + xHD(y) + [x; ¿(a)]D(y)

= D(x)D(y) + [x; ¿(a)]D(y) = [x; ¾(a)]D(y) + [x; ¿(a)]D(y);

that is,
[x; ¾(a) + ¿(a)]D(y) = 0; x; y 2 R:

Since D is a non-zero derivation of the prime ring R, using [7, Lemma 1], we obtain
¾(a) + ¿(a) 2 Z:
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COROLLARY 2. Let R be a prime ring of characteristic di®erent from two, d be
a nonzero derivation of R and U is (¾; ¿)-left Lie ideal of R: If [d(R); U ]¾ ;¿ = 0; then
¾(u) + ¿(u) 2 Z for all u 2 U:

THEOREM 3. Let R be a prime ring of characteristic di®erent from two, d a
nonzero derivation of R and a 2 R: If d([R;a]¾ ;¿ ) = 0; then ¾(a) + ¿(a) 2 Z:

PROOF. For all r 2 R;

0 = d([¿(a)r; a]¾ ;¿ ) = d(¿(a)[r; a]¾ ;¿ ) = d(¿(a))[r; a]¾ ;¿ + ¿(a)d([r; a]¾ ;¿ )

and so,
d(¿(a))[r; a]¾ ;¿ = 0; r 2 R: (9)

Taking rs; s 2 R instead of r in (9), we have

0 = d(¿(a))[rs; a]¾ ;¿ = d(¿(a))r[s; ¾(a)] + d(¿(a))[r; a]¾ ;¿ s:

Using (9), we get
d(¿(a))R[R; ¾(a)] = 0:

Since R is a prime ring, we see that d(¿(a)) = 0 or a 2 Z: If a 2 Z; then ¾(a)+¿(a) 2 Z:
The proof is then complete. Therefore, let us assume that a =2 Z. For r 2 R;

0 = d([r¾(a); a]¾ ;¿ ) = d([r; a]¾ ;¿ ¾(a))

= d([r; a]¾ ;¿ )¾(a) + [r; a]¾ ;¿ d(¾(a))

and so,
[r; a]¾ ;¿ d(¾(a)) = 0; r 2 R: (10)

Replacing r by rs; s 2 R in (10), we get

0 = [rs; a]¾ ;¿ d(¾(a)) = r[s; a]¾ ;¿ d(¾(a)) + [r; ¿(a)]sd(¾(a))

= [r; ¿(a)]sd(¾(a)):

That is,
[r; ¿(a)]Rd(¾(a)) = 0; r 2 R:

Since R is a prime ring, and since we have assumed that a =2 Z; we obtain

d(¾(a)) = 0:

Now, from our hypothesis, we have, for any r 2 R;

0 = d([r; a]¾ ;¿ ) = d(r¾(a) ¡ ¿(a)r)

= d(r)¾(a) + rd(¾(a)) ¡ d(¿(a))r ¡ ¿(a)d(r):

Since d(¾(a)) = 0 and d(¿(a)) = 0, we get

[d(r); a]¾ ;¿ = 0; r 2 R:

By Lemma 1, we have ¾(a) + ¿(a) 2 Z:
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COROLLARY 4. Let R be a prime ring of characteristic di®erent from two, d a
nonzero derivation of R and U is (¾; ¿)-left Lie ideal of R: If d([R; U ]¾ ;¿ ) = 0; then
¾(u) + ¿(u) 2 Z for all u 2 U:

EXAMPLE. Let

R =

½ µ
a b
c d

¶
: a; b; c; d 2 I

¾

and

¾

µ
a b
c d

¶
=

µ
d ¡ c
¡ b a

¶
; ¿

µ
a b
c d

¶
=

µ
a ¡ b
¡ c d

¶

be two autumorphisms of R and a =

µ
1 0
0 2

¶
=2 Z: If we de¯ne d : R ! R by

d

µ
a b
c d

¶
=

µ
0 ¡ b
c 0

¶
; then d is a derivation of R such that d([R;a]¾ ;¿ ) = 0; but

¾(a) + ¿(a) 2 Z:

THEOREM 6. Let R be a prime ring of characteristic di®erent from two, M a
non-zero ideal of R and a 2 R: If ([R; M ]¾ ;¿ ; a)¾ ;¿ = 0; then a 2 Z:

PROOF. Let m be a noncentral element of M . Consider the following mappings
on R : d1(r) = [r; m]¾ ;¿ and d2(r) = (r; a)¾ ;¿ : Then for any r 2 R; we have d2d1(r) =
d2([r; m]¾ ;¿ ) = ([r; m]¾ ;¿ ; a)¾ ;¿ = 0: That is,

d2d1(r) = 0; r 2 R: (11)

For r 2 R;

d1(r¾(m)) = [r¾(m);m]¾ ;¿

= r[¾(m); ¾(m)] + [r; m]¾ ;¿ ¾(m) = d1(r)¾(m);

and so we get,
d1(r¾(m)) = d1(r)¾(m); r 2 R: (12)

Let us consider (11) together with (12), we obtain

0 = d2d1(r¾(m)) = d2(d1(r)¾(m)) = (d1(r)¾(m); a)¾ ;¿

= d1(r)[¾(m); ¾(a)] + (d1(r); a)¾ ;¿ ¾(m);

and so we have
d1(R)[¾(m); ¾(a)] = 0: (13)

Putting in (13) rs; s 2 R for r we obtain

0 = d1(rs)[¾(m); ¾(a)] = rd1(s)[¾(m); ¾(a)] + [r; ¿(m)]s[¾(m); ¾(a)];

and using (13) we get

[r; ¿(m)]R[¾(m); ¾(a)] = 0; r 2 R:

Since R is a prime ring, we have m 2 Z or ¾([m; a]) = 0: If m 2 Z; then ¾([m;a]) = 0:
That is, [M; a] = 0 since ¾ is automorphism of R: For all x 2 R and m 2 M; 0 =
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[xm; a] = x[m; a] + [x; a]m = [x; a]m: That is, [x; a]RM = (0); the zero ideal of R. By
the primeness of R we have a 2 Z:

THEOREM 7. Let R be a prime ring of characteristic di®erent from two, d is a
nonzero derivation of R and a 2 R: Then (d(R); a) = 0 if, and only if, d((R; a)) = 0:

PROOF. Suppose (d(R); a) = 0: In this case we claim that d(a) = 0: If a = 0 then
d(a) = 0. So we assume that a 6= 0. For any x 2 R; the relation (d(x); a) = 0 gives

0 = (d(xa); a) = (d(x)a+xd(a); a) = d(x)[a; a]+(d(x); a)a+x(d(a); a)¡ [x; a]d(a) (14)

and so,
[x; a]d(a) = 0; x 2 R: (15)

If we take xy, y 2 R instead of x in (15), we obtain

[R; a]Rd(a) = (0):

Since R is a prime ring we have a 2 Z or d(a) = 0: Now, if a 2 Z then 0 = (d(a); a) =
d(a)a + ad(a) = 2d(a)a. Then d(a)a = 0: Since we assumed that 0 6= a and R is a
prime ring, we get d(a) = 0: Thus, we conclude that d(a) = 0: Hence for any r 2 R we
have d((r; a)) = (d(r); a) + (r; d(a)); and so, d((R; a)) = 0: Conversely, for x 2 R;

0 = d((ax; a)) = d(a(x; a) + [a; a]x)

= d(a(x; a)) = d(a)(x; a) + ad((x; a)):

Hence we have
d(a)(x; a) = 0; x 2 R: (16)

In (16) replace x by xy and use (16), we get

0 = d(a)(xy; a) = d(a)x[y; a] + d(a)(x; a)y = d(a)x[y; a];

that is, d(a)R[R; a] = 0: Since R is a prime ring, we have d(a) = 0 or a 2 Z: If
d(a) = 0; then for any r 2 R we have 0 = d((r; a)) = (d(r); a) + (r; d(a)) = (d(r); a);
and so (d(R); a) = 0: If a 2 Z; then 0 = d((a; a)) = 4d(a)a: Since the characteristic of
R is di®erent from 2; d(a)a = 0: Since a 2 Z, we get d(a)Ra = 0; and so, d(a) = 0 or
a = 0: Thus, d(a) = 0 is obtained. Finally, (d(R); a) = 0 as required.
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