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Abstract

In this paper, we introduce and discuss some strong forms of faintly continuity
for multifunctions. Basic properties and characterizations of such multifunctions
are established.

1 Introduction

In a series of papers, Long and Herrington [6] introduced and discussed µ-topology and
faintly continuous functions. In 1990, Yalvac. [17] introduced the concepts of super and
strongly faintly continuous functions. The main purpose of this paper is to de¯ne super
and strongly faintly continuous multifunctions and to obtain several characterizations
and basic properties of such multifunctions.

Let A be a subset of a topological space (X; ¿). intA and clA denote the interior
and closure of A respectively. A subset A of X is called regular open (regular closed)
i® A = int(cl(A)) (A = cl(int(A))). The family of all regular open subsets of (X; ¿)
form a base for a smaller topology ¿s on X , called semi regularizations of ¿ (see [6]).
A point x 2 X said to be a ±-cluster point of the subset A of (X; ¿) if U \ A 6= ; for
every ¿-regular open set U containing x. The set of all ±-cluster points of A is called
the ±-closure of A [16] and is denoted by ±-clA. If A = ±-clA then A is called ±-closed
and the complement of a ±-closed set is called ±-open. A point x 2 X is said to be a
µ-cluster point of A if clU \ A 6= ; for each open neighborhood U of x. The set of all
µ-cluster points of A is called the µ-closure of A [16] and is denoted by µ-clA. If A = µ-
clA then A is called µ-closed and the complement of a µ-closed set is called µ-open. In
a similar manner, the µ-interior of a set A is de¯ned to be the set of all x 2 A for which
there exists a closed neighborhood of x contained in A. In a topological space (X; ¿),
µ-open sets form a topology ¿µ on X and (X; ¿) is regular i® ¿ = ¿µ [6].

A space (X; ¿) is said to be almost regular [14] if for every regular closed set F and
each point x not belonging to F , there exist disjoint open sets U and V containing
F and x respectively. A subset A of a topological space (X; ¿) is called N-closed [1]
(H-set [16]) if every open cover of A by open sets in X has a ¯nite subfamily whose
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48 Continuous Multifunctions

interior of closures (resp. closures) cover A. A space (X; ¿) is called nearly compact
[15] (quasi H-closed [12]) if it is N-closed subset (resp. H-set) of it.

The net (x® )® 2I is µ-convergent (±-convergent [9]) to x if for each µ-open (resp.
regular open) set U containing x, there exists a ® 0 2 I such that ® ¸ ® 0 implies
x® 2 U . The net (x® )® 2I is r-convergent [4] to x if for each open set U containing x,
there exists a ® 0 2 I such that ® ¸ ® 0 implies x® 2 clU .

For a given topological space (X;¿), the collection of all sets of the form U+ =
fT µ X : T µ Ug (U¡ = fT µ X : T \ U 6= ;g) with U in ¿ form a basis (subbasis)
for a topology on 2X , where 2X is the set of all nonempty subsets of X (see [7]).
This topology is called upper (lower) Vietoris topology and denoted by ¿+

V (¿¡
V ). A

multifunction F of a set X into Y is a correspondence such that F (x) is a nonempty
subset of Y , for each x 2 X . We will denote such a multifunction by F : X ,! Y .
For a multifunction F , the upper and lower inverse set of a set B of Y will be denoted
by F+(B) and F ¡ (B) respectively, that is F+(B) = fx 2 X : F (x) µ Bg and
F ¡ (B) = fx 2 X : F (x) \ B 6= ;g. Given a multifunction F : X ,! Y where F (x) is
nonempty, we de¯ne the induced function f on X into 2Y by setting f(x) = F (x) for
each x 2 X . Note that f is single valued and f will always denote the function induced
by F unless otherwise stated. A function f : X ! Y is said to be super continuous
[8] (strongly µ-continuous [5]) if for each x 2 X and each open set V containing f(x),
there is an open set U containing x such that f(int(clU)) µ V (resp. f(clU) µ V ).
A multifunction F : X ,! Y is called upper semi continuous or u.s.c. [11] (lower semi
continuous or l.s.c. [11]) at a point x 2 X if for each open set V µ Y with F (x) µ V
(resp. F (x) \ V 6= ;), there is an open set U containing x such that F (U) µ V
(resp. F (z) \ V 6= ; for each z 2 U). A multifunction F : X ,! Y is called upper
strongly µ-continuous or u.s.µ-c. [2] (lower strongly µ-continuous or l.s.µ-c. [2]) at a
point x 2 X if for each open set V µ Y with F (x) µ V (resp. F (x) \ V 6= ;),
there is an open set U containing x such that F (clU) µ V (F (z) \ V 6= ; for each
z 2 clU). A multifunction F : X ,! Y is called upper ±-continuous or u.±-c. [3]
(lower ±-continuous or l.±-c. [3]) at a point x 2 X if for each open set V µ Y with
F (x) µ int(clV ) (resp. F (x) \ int(clV ) 6= ;), there is an open set U containing x such
that F (int(clU)) µ int(clV ) (F (z) \ int(clV ) 6= ; for each z 2 int(clU)).

2 Super Faintly Continuous Multifunctions

In this section, we de¯ne upper (lower) super faintly continuous multifunctions and we
obtain many characterizations and basic properties of these multifunctions.

DEFINITION 1. A multifunction F : X ,! Y is said to be (a) upper super faintly
continuous (brie°y u.s.f.c.) at a point x 2 X if for each µ-open set V in Y with
F (x) µ V , there exists an open set U containing x such that F (int(clU)) µ V ; (b)
lower super faintly continuous (brie°y l.s.f.c.) at a point x 2 X if for each µ-open set V
in Y with F (x)\V 6= ;, there exists an open set U containing x such that F (z)\V 6= ;
for every z 2 int(clU); and (c) upper (lower) super faintly continuous on X if it has
the property at each point x 2 X .

EXAMPLE 1. Let X = f0; 1; 2g and Y = fa; b; c; d; eg. Let ¿ and À be re-
spectively topologies on X and on Y given by ¿ = f;; X; f0g; f1g; f0; 1gg and À =
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f;; Y; fa; bg; fc; dg; fc; d; eg; fa; b; c; dgg. De¯ne the multifunction F : X ,! Y by
F (0) = fa; b; cg, F (1) = fdg, F (2) = fb; c; eg. Then F is u.s.f.c.

EXAMPLE 2. Let X = f0; 1; 2g and Y = fa; b; c; d; eg. Let ¿ and À be re-
spectively topologies on X and on Y given by ¿ = f;; X; f0g; f1g; f0; 1gg and À =
f;; Y; fa; bg; fc; dg; fc; d; eg; fa; b; c; dgg. De¯ne the multifunction F : X ,! Y by
F (0) = fa; b; cg, F (1) = fdg, F (2) = fc; dg. Then F is l.s.f.c.

THEOREM 1. Let F : (X; ¿) ,! (Y; À) be a multifunction, then the following
statements are equivalent.

(1) F is l.s.f.c.

(2) For any µ-open set V µ Y and for each x of X with F (x) \ V 6= ;, there is a
regular open set U containing x such that z 2 U implies F (x) \ V 6= ;.

(3) F : (X; ¿s) ,! (Y; Àµ) is l.s.c.

(4) F ¡ (V ) µ X is ±-open in X for every µ-open set V of Y:

(5) F+(K) µ X is ±-closed in X for every µ-closed set K of Y:

(6) The induced mapping f : (X; ¿) ! (2Y ; (Àµ)
¡
V ) is super continuous.

(7) The induced mapping f : (X; ¿s) ! (2Y ; (Àµ)
¡
V ) is continuous.

(8) For each x 2 X and for each net (x® )® 2I which is ±-converging to x and any
µ-open set V with F (x) \ V 6= ;, there exists ® 0 2 I such that ® ¸ ® 0 implies
F (x® ) \ V 6= ;:

(9) For each y 2 F (x) and for every net (x® )® 2I which is ±-converging to x, there
exists a subnet (z¯ )¯ 2» of the net (x® )® 2I and a net (y¯ )(¯ ;V )2» in Y with
y¯ 2 F (z¯ ) is µ-convergent to y.

PROOF. (1))(2). Let x 2 X and let V be a µ-open set in Y with F (x) \ V 6= ;.
Since f is l.s.f.c. at x, there exists an open set W of X containing x such that z 2
int(clW ) implies F (z) \ V 6= ;. Put int(clW ) = U . Then U is a regular open set in X
and z 2 U implies F (z) \ V 6= ;.

(2))(3) and (3))(4). These are immediate.

(4))(5). Let K µ Y be any µ-closed set. Then Y ¡ K µ Y is a µ-open set, by
(4), F ¡ (Y ¡ K) µ X is a ±-open set. Since we can write F+(K) = X ¡ F ¡ (Y ¡ K),
F+(K) is a ±-closed set in X:

(5))(1). Let x 2 X and let V µ Y be a µ-open set with x 2 F ¡ (V ). Then
Y ¡ V µ Y is a µ-closed set, by (5), F+(Y ¡ V ) µ X is a ±-closed set. Since we
can write F ¡ (V ) = X ¡ F+(Y ¡ V ), F ¡ (V ) is a ±-open set in X and x 2 F ¡ (V ).
Therefore, there is an open set U containing x such that x 2 int(clU) µ F ¡ (V ).

(1))(6). For any x 2 X, let f(x) 2 \n
i=1V

¡
i and \n

i=1V
¡
i be a (Àµ)

¡
V ¡ open set in

2Y . Then V1; :::; Vn are µ-open sets in Y and since f(x) 2 V ¡
i for i = 1; 2; :::; n, we

have F (x) \ Vi 6= ;. Since F is l.s.f.c. at x 2 X , there exists an open set Ui containing
x such that z 2 int(clUi) implies F (z) \ Vi 6= ; for all i = 1; 2; :::; n. Put U = \n

i=1Ui.
Then, we obtain f(z) 2 \n

i=1V
¡
i for all z 2 int(clU) i.e. f(int(clU)) µ \n

i=1V
¡
i .

(6))(1). Let x 2 X and V be a µ-open set with x 2 F ¡ (V ). Then f(x) = F (x) 2
V ¡ and V ¡ is a (Àµ)

¡
V -open set in 2Y . Since f is super continuous at x 2 X, there

exists an open set U such that F (int(clU)) = f(int(clU)) µ V ¡ . Thus we obtain an
open set U containing x such that z 2 int(clU) implies F (z) \ V 6= ;.

(6),(7). This is obvious from [13].
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(4))(8). Let x 2 X and (x® )® 2I be a net ±-converging to x. By (4), for any
µ-open set V in Y with F (x) \ V 6= ;, F ¡ (V ) is an ±-open set in X and x 2 F ¡ (V ).
Hence there exists an open set U such that x 2 int(clU) µ F ¡ (V ). For this U , since
(x® )® 2I is ±-convergent to x, there is a ® 0 2 I such that x® 2 F ¡ (V ) for all ® ¸ ® 0

and F (x® ) \ V 6= ; for all ® ¸ ® 0 and (8) follows.

(8))(4). Suppose (4) is not true. Then there is a µ-open set V in Y with x 2 F ¡ (V )
such that for each open set U of X containing x, x 2 int(clU) 6µ F ¡ (V ) i.e. there
is a xU 2 int(clU) such that xU =2 F ¡ (V ). De¯ne D = f(xU ; U) : U 2 ¿(x); xU 2
int(clU); xU =2 F ¡ (V )g. Now the ordering · de¯ned by (xU1 ; U1) · (xU ; U) , U µ U1

is a direction on D and g de¯ned by g : D ! X , g((xU ; U)) = xU is a net on X. The
net (xU )(xU ;U)2D is ±-converging to x. But F (xU ) \ V 6= ; for all (xU ; U) 2 D. This
is a contradiction.

(1))(9). Suppose F is l.s.f.c. at x0. Let (x® )® 2I be a net ±-converging to x0. Let
y 2 F (x0) and V be any µ-open set containing y. So we have F (x0) \ V 6= ;. Since F
is l.s.f.c. at x0, there exists an open set U such that x 2 int(clU) µ F ¡ (V ). Since the
net (x® )® 2I is ±-convergent to x0, for this U , there exists ® 0 2 I such that ® ¸ ® 0 )
x® 2 int(clU). Therefore, we have the implication ® ¸ ® 0 ) x® 2 F ¡ (V ). For each
µ-open set V µ Y containing y, de¯ne the sets IV = f® 0 2 I : ® ¸ ® 0 ) x® 2 F ¡ (V )g
and » = f(® ; V ) : ® 2 IV ; y 2 V and V is µ-openg and an ordering ¸ on » as follows:
\(¶® ; ¶V ) ¸ (® ; V ) , ¶V µ V and ¶® ¸ ® ". De¯ne ' : » ! I by '((¯; V )) = ¯ . Then '
is increasing and co¯nal in I , so ' de¯nes a subnet of (x® )® 2I . We denote the subnet
(z¯ )(¯ ;V )2» . On the other hand, for any (¯ ; V ) 2 », if ¯ ¸ ¯0 then x¯ 2 F ¡ (V ) and we
have F (z¯ ) \ V = F (x¯ ) \ V 6= Á . Pick y¯ 2 F (z¯ ) \ V 6= Á . Then the net (y¯ )(¯ ;V )2»

is µ-convergent to y. To see this, let V0 be a µ-open set containing y. Then there exists
¯0 2 I such that '((¯0; V0)) = ¯0 and y¯0 2 V . If (¯; V ) ¸ (¯0; V0) this means that
¯ ¸ ¯0 and V µ V0. Therefore, y¯ 2 F (z¯ )\V = F (x¯ )\V µ F (x¯ )\V0, so y¯ 2 V0.
Thus (y¯ )(¯ ;V )2» is µ-convergent to y.

(9))(1). Suppose (1) is not true, i.e. F is not l.s.f.c. at x0. Then there exists
a µ-open set V µ Y so that x0 2 F ¡ (V ) and for each open set U µ X containing
x0, there is a point xU 2 int(clU) for which xU =2 F ¡ (V ). Let us consider the net
(xU )U2¿ (x0) where ¿(x0) is the system of ¿-neighborhoods of x0. Obviously (xU )U2¿ (x0)

is ±-convergent to x0. Let y0 2 F (x0) \ V . By (9), there is a subnet (zw)w2W of
(xU )U2¿ (x0) and yw 2 F (zw) like (yw)w2W is µ-convergent to y0. As y0 2 V and
V µ Y is a µ-open set, there is ¶w0 2 W so that w ¸ ¶w0 implies yw 2 V . On the
other hand, (zw)w2W is a subnet of the net (xU )U2¿ (x0) and so there is a function
h : W ! ¿(x0) such that zw = xh(w) and for each U 2 ¿(x0), there is ~w0 2 W such
that h( ~w0) ¸ U . If w ¸ ~w0, then h(w) ¸ h( ~w0) ¸ U . Let us consider w0 2 W so
that w0 ¸ ¶w0 and w0 ¸ ~w0. Therefore, yw 2 V for each w ¸ w0. By the de¯nition of
the net (xU )U2¿ (x0), we have F (zw) \ V = F (xh(w)) \ V = ; and yw =2 V . This is a
contradiction and so F is l.s.f.c. at x0.

THEOREM 2. For a multifunction F : (X;¿) ,! (Y; À), the following statements
are equivalent.

(1) F is u.s.f.c.

(2) For any µ-open set V µ Y and for each x of X with F (x) µ V , there is a regular
open set U containing x such that F (U) µ V .
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(3) F : (X; ¿s) ,! (Y; Àµ) is u.s.c.
(4) F+(V ) µ X is ±-open in X for every µ-open set V of Y:
(5) F ¡ (K) µ X is ±-closed in X for every µ-closed set K of Y:
(6) The induced mapping f : (X; ¿) ! (2Y ; (Àµ)

+
V ) is super continuous.

(7) The induced mapping f : (X; ¿s) ! (2Y ; (Àµ)
+
V ) is continuous.

(8) For each x 2 X and for each net (x® )® 2I which is ±-converging to x and any
µ-open set V with F (x) µ V , there exists ® 0 2 I such that ® ¸ ® 0 implies
F (x® ) µ V:

The proof is similar to that of Theorem 1, and is omitted.

For a given multifunction F : X ,! Y , the graph multifunction GF : X ,! X £ Y
is de¯ned as GF (x) = fxg £ F (x) for every x 2 X. In [10], it was shown that for a
multifunction F : X ,! Y , G+

F (A £ B) = A \ F+(B) and G¡
F (A £ B) = A \ F ¡ (B)

where A µ X and B µ Y .

THEOREM 3. If the graph multifunction of F : X ,! Y is u(l).s.f.c., then F is
u(l).s.f.c.

PROOF. We shall prove only the case where F is l.s.f.c. Let x 2 X and V be a µ-
open set in Y such that x 2 F ¡ (V ). Then GF (x)\(X £ V ) = (fxg£ F (x))\(X £ V ) =
fxg £ (F (x) \ V ) 6= ; and X £ V is µ-open in X £ Y by Theorem 5 in [6]. Since
the graph multifunction GF is l.s.f.c., there exists an open set U containing x such
that z 2 int(clU) implies GF (z) \ (X £ V ) 6= ;. Therefore, we obtain int(clU) µ
G¡

F (X £ V ) = F ¡ (V ) from above equalities. Consequently, F is l.s.f.c.

PROPOSITION 4. Let (X; ¿) be a topological space, A ½ Y an open set and
U ½ X a regular open set. Then W = A \ U is regular open set in A [3].

THEOREM 5. For a multifunction F : X ,! Y , the following statements are true.
a) If F is u(l).s.f.c. and A is an open set of X, then F jA: A ,! Y is u(l).s.f.c.
b) Let fA® : ® 2 Ig be a regular open cover of X . Then a multifunction F : X ,! Y

is u(l).s.f.c. i® the restrictions F jA® : A® ,! Y are u(l).s.f.c. for every ® 2 I.

The proof is obvious from the above proposition and we omit it.

THEOREM 6. If F : X ,! Y is a l.±-c. multifunction and G : Y ,! Z is a l.s.f.c.
multifunction, then G ± F : X ,! Z is a l.s.f.c. multifunction.

PROOF. Let V be a µ-open set of Z. We know that (G ± F )¡ (V ) = F ¡ (G¡ (V )).
Since G is l.s.f.c., G¡ (V ) is a ±-open set in Y and since F is l.±-c., F ¡ (G¡ (V )) is an
±-open set in X by Theorem 2.2 in [3]. Thus we obtain that (G ± F )¡ (V ) is ±-open in
X, and so G ± F is l.s.f.c.

A multifunction F : X ,! Y is said to be point closed (resp. point compact) i® for
each x 2 X, F (x) is closed (resp. compact) in Y .

THEOREM 7. Let F : (X; ¿) ,! (Y; À) be a point compact and u.s.f.c. multifunc-
tion. If A is N-closed in X, then F (A) is Àµ -compact in Y .

PROOF. Let A be a N-closed set in X , and § be Àµ -open cover of F (A). If a 2 A,
then F (a) µ [§ . Since Àµ µ À and F (a) is compact, there exists a ¯nite subfamily
§ n(a) of § such that F (a) µ [§ n(a). Let [§ n(a) be Va. Va is a µ-open set in Y . Since
F is u.s.f.c. at a, there exists an open set Ua of X such that a 2 int(clUa) µ F+(Va).
Therefore, ª = fUa : a 2 Ag is an open cover of A. Since A is N-closed set in X,
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there exist a1; a2; :::; ak 2 A such that A µ [fint(clUai) : ai 2 A; i = 1; 2; :::; kg. So we
obtain

F (A) µ F ([fint(clUai) : ai 2 A; i = 1; 2; :::; kg)

µ [fVai : ai 2 A; i = 1; 2; :::; kg
µ [f[§ n(ai) : ai 2 A; i = 1; 2; :::; kg:

Thus F (A) is Àµ -compact in Y .

We know that in almost regular space (Y; À), quasi H-closedness and Àµ-compactness
are the same [18]. Therefore, we have the following corollary.

COROLLARY 8. Let F : (X; ¿) ,! (Y; À) be a point compact and u.s.f.c. multi-
function. If X is nearly compact and F is surjective, then Y is Àµ-compact. In addition,
if (Y; À) is almost regular, then space (Y; À) is quasi H-closed.

3 Strongly Faintly Continuous Multifunctions

In this section, we de¯ne upper (lower) strongly faintly continuous multifunctions and
we obtain many characterizations and basic properties of these multifunctions.

DEFINITION 2. A multifunction F : X ,! Y is said to be (a) upper strongly
faintly continuous (brie°y u.str.f.c.) at a point x 2 X if for each µ-open set V in Y
with F (x) µ V , there exists an open set U containing x such that F (clU) µ V ; (b)
lower strongly faintly continuous (brie°y l.str.f.c.) at a point x 2 X if for each µ¡ open
set V in Y with F (x) \ V 6= ;, there exists an open set U containing x such that
F (z) \ V 6= ; for every z 2 clU ; and (c) upper (lower) strongly faintly continuous on
X if it has the property at each point x 2 X.

As an example, let X = f0; 1g with topology ¿ = f;; X; f0gg, let Y = fa; b; cg with
topology À = f;; Y; fag; fbg; fa; bgg, and let F : X ,! Y be de¯ned as F (0) = fag and
F (1) = fa; bg. Then F is u(l).str.f.c. since the only µ¡ open set in Y is Y itself.

COROLLARY 9. If a multifunction F is u(l).str.f.c., then F is u(l).s.f.c.

Note that the converse of the above corollary is false in general. Indeed, in Example
1, F is u.s.f.c., but F is not u.str.f.c at 1 2 X . Also, in Example 2, F is l.s.f.c., but F
is not l.str.f.c at 0 2 X .

THEOREM 10. For a multifunction F : (X; ¿) ,! (Y; À), the following statements
are equivalent.

(1) F is l.str.f.c.
(2) F : (X; ¿µ) ,! (Y; Àµ) is l.s.c.
(3) F : (X; ¿) ,! (Y; Àµ) is l.s.µ¡ c.
(4) F ¡ (V ) µ X is µ-open in X for every µ-open set V of Y:
(5) F+(K) µ X is µ-closed in X for every µ-closed set K of Y:
(6) The induced mapping f : (X; ¿) ! (2Y ; (Àµ)

¡
V ) is strongly µ-continuous.

(7) The induced mapping f : (X; ¿µ) ! (2Y ; (Àµ)
¡
V ) is continuous.

(8) For each x 2 X and for each net (x® )® 2I which is r-converging to x and any
µ-open set V with F (x) \ V 6= ;, there exists ® 0 2 I such that ® ¸ ® 0 implies
F (x® ) \ V 6= ;:
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(9) For each y 2 F (x) and for every net (x® )® 2I which is r-converging to x, there
exists a subnet (z¯ )¯ 2» of the net (x® )® 2I and a net (y¯ )(¯ ;V )2» in Y with
y¯ 2 F (z¯ ) is µ-convergent to y.

THEOREM 11. For a multifunction F : (X; ¿) ,! (Y; À), the following statements
are equivalent.

(1) F is u.str.f.c.

(2) F : (X; ¿µ) ,! (Y; Àµ) is u.s.c.

(3) F : (X; ¿) ,! (Y; Àµ) is u.s.µ-c.

(4) F+(V ) µ X is µ-open in X for every µ-open set V of Y:

(5) F ¡ (K) µ X is µ-closed in X for every µ-closed set K of Y:

(6) Induced mapping f : (X; ¿) ! (2Y ; (Àµ)
+
V ) is strongly µ-continuous.

(7) Induced mapping f : (X; ¿µ) ! (2Y ; (Àµ)
+
V ) is continuous.

(8) For each x 2 X and for each net (x® )® 2I which is r-converging to x and any
µ-open set V with F (x) µ V , there exists ® 0 2 I such that ® ¸ ® 0 implies
F (x® ) µ V:

THEOREM 12. If the graph multifunction of F : X ,! Y is u(l).str.f.c., then F is
u(l).str.f.c.

PROOF. We shall only prove the case where F is u.str.f.c. Let x 2 X and V be
a µ-open set in Y such that x 2 F+(V ). Then GF (x) µ X £ V and X £ V is µ-open
in X £ Y by Theorem 5 in [6]. Since the graph multifunction GF is u.str.f.c., there
exists an open set U containing x such that GF (clU) µ X £ V . Therefore, we obtain
clU µ G+

F (X £ V ) = F+(V ). Consequently, F is u.str.f.c.

THEOREM 13. If F : X ,! Y and G : Y ,! Z are u(l).str.f.c. multifunctions, then
G ± F : X ,! Z u(l).str.f.c. multifunction.

The proof is similar to that of Theorem 5 by Theorem 7 and Theorem 8.

The graph G(F ) of the multifunction F : X ,! Y is µ-closed with respect to X
if for each (x; y) =2 G(F ), there exist an open set U containing x and an open set V
containing y such that (clU £ V ) \ G(F ) = ;.

THEOREM 14. Let F : (X; ¿) ,! (Y; À) be a point closed multifunction. If F is
u.str.f.c. and assume that Y is regular, then G(F ) is µ-closed with respect to X.

PROOF. Suppose (x; y) =2 G(F ). Then we have y =2 F (x). Since Y is regular, there
exist disjoint open sets V1; V2 of Y such that y 2 V1 and F (x) µ V2. By regularity
of Y , V2 is also µ-open in Y . Since F is u.str.f.c. at x, there exists an open set U
in X containing x such that F (clU) µ V2. Therefore, we obtain x 2 U , y 2 V1 and
(x; y) 2 clU £ V1 µ (X £ Y ) ¡ G(F ). So G(F ) is µ-closed with respect to X.

THEOREM 15. Let F : (X; ¿) ,! (Y; À) be a point compact and u.str.f.c. multi-
function. If A is H-set, then F (A) is Àµ -compact in Y .

PROOF. Let A be a H-set and § be Àµ-open cover of F (A). If a 2 A, then
F (a) µ [§ . Since Àµ µ À and F (a) is compact, there exists a ¯nite subfamily § n(a)

of § such that F (a) µ [§ n(a). Let [§ n(a) be Va. Va is a µ-open set in Y . Since
F is u.str.f.c. at a, there exists an open set Ua of X such that a 2 clUa µ F+(Va).
Therefore, ª = fUa : a 2 Ag is an open cover of A. Since A is H-set, there exist
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a1; a2; :::; ak 2 A such that A µ [fclUai : ai 2 A; i = 1; 2; :::; kg. So we obtain

F (A) µ F ([fclUai : ai 2 A; i = 1; 2; :::; kg)
µ [fVai : ai 2 A; i = 1; 2; :::; kg
µ [f[§ n(ai) : ai 2 A; i = 1; 2; :::; kg:

Thus F (A) is Àµ¡ compact in Y .

COROLLARY 16. Let F : (X; ¿) ,! (Y; À) be a point compact and u.str.f.c.
multifunction. If X is quasi H-closed and F is surjective, then Y is Àµ-compact. In
addition, if (Y; À) is almost regular, then space (Y; À) is quasi H-closed.

THEOREM 17. Let F : (X; ¿) ,! (Y; À) be a point closed and u.str.f.c. multifunc-
tion. If F satis¯es x1 6= x2 ) F (x1) 6= F (x2) and Y is a regular space, then X will be
Hausdor®.

PROOF. Let distinct x1; x2 belong to X . Then F (x1) 6= F (x2). Since F is point
closed and Y is regular, for all y 2 F (x1) with y =2 F (x2), there exist µ-open sets V1,
V2 containing y and F (x2) respectively such that V1 \ V2 = ;. Since F is u.str.f.c. and
F (x2) ½ V2, there exists an open set U containing x2 such that F (clU) µ V2. Thus
x1 =2 clU . Therefore, U and X ¡ clU are disjoint open sets separating x1 and x2.

The following example shows that if upper strongly faintly continuity is replaced
by upper semi continuity, Theorem 17 will be false.

EXAMPLE 3. Let X = fa; b; cg with the topology ¿ = f;; X; fagfcgfa; cgg and
Y = [0; 1] with the usual topology. De¯ne the multifunction F : X ,! Y , by F (x) =
[0; 1=4] for x = a; F (x) = Y for x = b and F (x) = f1=3g for x = c: Then F is point
closed, u.s.c. and Y is regular, but X is not Hausdor®.

We know that a space (Y; À) is regular i® À = Àµ . Therefore, for a multifunction
which is de¯ned on a regular space, strongly µ-continuousness and strongly faintly
continuousness are equivalent. Hence, the proofs of the following corollaries are similar
to those of [2]. First, if F : (X; ¿) ,! (Y; À) is a one-to-one point compact, u.str.f.c.
multifunction and Y is a T3-space, then X is Urysohn. Next, if F : (X; ¿) ,! (Y; À) is
a multifunction and Y is a regular space, and if GF is u.str.f.c., then X is a regular
space. Here a multifunction F : (X; ¿) ,! (Y; À) is one-to-one in case x1 6= x2 )
F (x1) \ F (x2) = ; for all x1,x2 2 X. However, if upper strongly faintly continuity is
replaced by upper semi continuity, the last corollary will be false in general. Indeed,
let X = fa; b; cg with the topology ¿ = f;; X; fag; fa; bgg and Y = [0; 1] with the
usual topology. De¯ne the multifunction F : X ,! Y , by F (x) = (1=3; 2=3) for x = a;
F (x) = (1=4; 3=4) for x = b and F (x) = Y for x = c: Then the graph of F is u.s.c. and
Y is regular, but X is not regular.
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