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Abstract

In this paper, we introduce and discuss some strong forms of faintly continuity
for multifunctions. Basic properties and characterizations of such multifunctions
are established.

1 Introduction

In a series of papers, Long and Herrington [6] introduced and discussed #-topology and
faintly continuous functions. In 1990, Yalvac [17] introduced the concepts of super and
strongly faintly continuous functions. The main purpose of this paper is to define super
and strongly faintly continuous multifunctions and to obtain several characterizations
and basic properties of such multifunctions.

Let A be a subset of a topological space (X, 7). intA and clA denote the interior
and closure of A respectively. A subset A of X is called regular open (regular closed)
iff A =int(cl(A)) (A = cl(int(A))). The family of all regular open subsets of (X, 7)
form a base for a smaller topology 75 on X, called semi regularizations of 7 (see [6]).
A point 2 € X said to be a é-cluster point of the subset A of (X,7) if UN A # () for
every T-regular open set U containing x. The set of all §-cluster points of A is called
the é-closure of A [16] and is denoted by 8-clA. If A = 6-clA then A is called é-closed
and the complement of a §-closed set is called d-open. A point z € X is said to be a
O-cluster point of A if cIlU N A # ) for each open neighborhood U of x. The set of all
O-cluster points of A is called the #-closure of A [16] and is denoted by 6-clA. If A = 6-
clA then A is called #-closed and the complement of a 6-closed set is called 8-open. In
a similar manner, the f-interior of a set A is defined to be the set of all x € A for which
there exists a closed neighborhood of x contained in A. In a topological space (X, 7),
f-open sets form a topology 79 on X and (X, 7) is regular iff 7 = 74 [6].

A space (X, 1) is said to be almost regular [14] if for every regular closed set F' and
each point x not belonging to F', there exist disjoint open sets U and V' containing
F and z respectively. A subset A of a topological space (X, ) is called N-closed [1]
(H-set [16]) if every open cover of A by open sets in X has a finite subfamily whose
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48 Continuous Multifunctions

interior of closures (resp. closures) cover A. A space (X, 7) is called nearly compact
[15] (quasi H-closed [12]) if it is N-closed subset (resp. H-set) of it.

The net (24)acr is O-convergent (§-convergent [9]) to x if for each f-open (resp.
regular open) set U containing z, there exists a ag € I such that a > g implies
Zo € U. The net (z4)aer is r-convergent [4] to x if for each open set U containing z,
there exists a ag € I such that a > ag implies z,, € clU.

For a given topological space (X,7), the collection of all sets of the form UT =
{TCX:TCU} (U ={TCX:TNU # 0}) with U in 7 form a basis (subbasis)
for a topology on 2% where 2% is the set of all nonempty subsets of X (see [7]).
This topology is called upper (lower) Vietoris topology and denoted by 7/ (7y,). A
multifunction F of a set X into Y is a correspondence such that F(x) is a nonempty
subset of Y, for each x € X. We will denote such a multifunction by F' : X — Y.
For a multifunction F', the upper and lower inverse set of a set B of Y will be denoted
by F*(B) and F~(B) respectively, that is FT(B) = {x € X : F(z) C B} and
F~(B)={z € X : F(z)N B # 0}. Given a multifunction F : X — Y where F(z) is
nonempty, we define the induced function f on X into 2¥ by setting f(x) = F(z) for
each x € X. Note that f is single valued and f will always denote the function induced
by F' unless otherwise stated. A function f : X — Y is said to be super continuous
[8] (strongly 6-continuous [5]) if for each x € X and each open set V' containing f(x),
there is an open set U containing x such that f(int(clU)) C V (resp. f(clU) C V).
A multifunction F' : X — Y is called upper semi continuous or u.s.c. [11] (lower semi
continuous or l.s.c. [11]) at a point = € X if for each open set V C Y with F(z) CV
(resp. F(x) NV # 0), there is an open set U containing = such that F(U) C V
(resp. F(2) NV # ( for each z € U). A multifunction F' : X — Y is called upper
strongly #-continuous or u.s.f-c. [2] (lower strongly f-continuous or l.s.f-c. [2]) at a
point z € X if for each open set V C Y with F(z) C V (resp. F(z) NV # 0),
there is an open set U containing z such that F(clU) C V (F(2) NV # § for each
z € cU). A multifunction F : X — Y is called upper §-continuous or u.é-c. [3]
(lower é-continuous or 1.6-c. [3]) at a point x € X if for each open set V C Y with
F(z) Cint(clV) (resp. F(z) Nint(clV) # (), there is an open set U containing z such
that F(int(clU)) Cint(clV) (F(z) Nint(clV) # 0 for each z € int(clU)).

2 Super Faintly Continuous Multifunctions

In this section, we define upper (lower) super faintly continuous multifunctions and we
obtain many characterizations and basic properties of these multifunctions.

DEFINITION 1. A multifunction F' : X — Y is said to be (a) upper super faintly
continuous (briefly u.s.f.c.) at a point z € X if for each f-open set V in Y with
F(xz) C V, there exists an open set U containing x such that F(int(clU)) C V; (b)
lower super faintly continuous (briefly l.s.f.c.) at a point « € X if for each §-open set V
in Y with F(z)NV # (0, there exists an open set U containing = such that F(z)NV # )
for every z € int(clU); and (c) upper (lower) super faintly continuous on X if it has
the property at each point x € X.

EXAMPLE 1. Let X = {0,1,2} and Y = {a,b,¢,d,e}. Let 7 and v be re-
spectively topologies on X and on Y given by 7 = {0, X,{0},{1},{0,1}} and v =
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{0,Y,{a,b},{c,d},{c,d,e},{a,b,c,d}}. Define the multifunction F' : X — Y by
F(0) ={a,b,c}, F(1) ={d}, F(2) = {b,c,e}. Then F is u.s.f.c.

EXAMPLE 2. Let X = {0,1,2} and Y = {a,b,¢,d,e}. Let 7 and v be re-
spectively topologies on X and on Y given by 7 = {0, X,{0},{1},{0,1}} and v =
{0,Y,{a,b},{c,d},{c,d,e},{a,b,c,d}}. Define the multifunction F : X — Y by
F(0) ={a,b,c}, F(1) ={d}, F(2) = {c,d}. Then F is Ls.f.c.

THEOREM 1. Let F : (X,7) — (Y,v) be a multifunction, then the following
statements are equivalent.
(1) Fis Ls.f.c.
(2) For any f-open set V C Y and for each x of X with F(z) NV # (), there is a
regular open set U containing x such that z € U implies F(z) NV # 0.
(3) F: (X,75) — (Y, vy) is Ls.c.
(4) F~(V) C X is 6-open in X for every f-open set V of Y.

(5) FT(K) C X is §-closed in X for every f-closed set K of Y.

(6) The induced mapping f : (X,7) — (2, (vp);,) is super continuous.

(7) The induced mapping f : (X, 7s) — (2, (vg);,) is continuous.

(8) For each z € X and for each net (xq)aer which is é-converging to « and any
f-open set V with F(z) NV # (), there exists oy € I such that « > «p implies
F(zo) NV #£0.

(9) For each y € F(z) and for every net (4 )aecsr which is é-converging to x, there
exists a subnet (zs)see of the net (v4)aer and a net (ys)pg,v)ee in Y with
Y € F(zg) is f-convergent to y.

PROOF. (1)=(2). Let z € X and let V be a f-open set in Y with F(z) NV # 0.
Since f is Ls.f.c. at x, there exists an open set W of X containing x such that z €
int(clW) implies F(2) NV # (. Put int(clW) = U. Then U is a regular open set in X
and z € U implies F(z) NV # (.

(2)=(3) and (3)=(4). These are immediate.

(4)=(5). Let K C Y be any 6-closed set. Then Y — K C Y is a f-open set, by
(4), F~(Y — K) C X is a §-open set. Since we can write FT(K) = X — F~(Y — K),
F*(K) is a é-closed set in X.

(5)=(1). Let x € X and let V C Y be a G-open set with x € F~(V). Then
Y -V C Y is a 0-closed set, by (5), FT(Y — V) C X is a 6-closed set. Since we
can write F~ (V) = X — FY(Y — V), F~(V) is a 6-open set in X and z € F~ (V).
Therefore, there is an open set U containing « such that = € int(clU) C F~ (V).

(1)=(6). For any z € X, let f(z) € N’_,V,” and NI, V;” be a (vg),, —open set in
2Y. Then Vi,...,V,, are 6-open sets in Y and since f( ) eV, fori=1,2,..,n, we
have F(z) N'V; # (. Since F is l.s.f.c. at z € X, there exists an open set U; containing
x such that z € int(clU;) implies F(2) NV, # @ for all i = 1,2,...,n. Put U = N, U;.
Then, we obtain f(z) € NIV, for all z € int(clU) i.e. f(mt(clU)) cn, V.

(6)=(1). Let z € X and V be a #-open set with z € F'~ (V). Then f( )=F(x) €
V= and V™ is a (vg)y,-open set in 2Y. Since f is super continuous at x € X, there
exists an open set U such that F(int(clU)) = f(int(clU)) C V~. Thus we obtain an
open set U containing x such that z € int(clU) implies F'(z) NV # .

(6)<(7). This is obvious from [13].
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(4)=(8). Let z € X and (z4)aecs be a net 6-converging to x. By (4), for any
G-open set V in Y with F(z)NV # 0, F~(V) is an 6-open set in X and z € F~ (V).
Hence there exists an open set U such that x € int(clU) C F~ (V). For this U, since
(Ta)acr is 6-convergent to x, there is a oy € I such that z, € F~(V) for all @ > ap
and F(xq) NV #£ 0 for all & > ap and (8) follows.

(8)=(4). Suppose (4) is not true. Then there is a f-openset VinY withz € F~ (V)
such that for each open set U of X containing z, x € int(clU) € F~(V) i.e. there
is a zy € int(clU) such that xy ¢ F~ (V). Define D = {(xy,U) : U € 7(x),zy €
int(clU),zy ¢ F~(V)}. Now the ordering < defined by (zy,,U;) < (zy,U) < U C Uy
is a direction on D and g defined by g : D — X, g((zy,U)) = zy is a net on X. The
net () 2y, vyep is 6-converging to x. But F(xy) NV # 0 for all (zy,U) € D. This
is a contradiction.

(1)=(9). Suppose F is Ls.f.c. at zg. Let (x4)aer be a net 6-converging to xg. Let
y € F(zo) and V be any f-open set containing y. So we have F(xg) NV # (). Since F
is Ls.f.c. at xg, there exists an open set U such that x € int(clU) C F~ (V). Since the
net (zq)aer is 6-convergent to xg, for this U, there exists g € I such that a > ag =
Zo € int(clU). Therefore, we have the implication « > g = z, € F~ (V). For each
G-open set V C Y containing y, define the sets Iy = {ap € I : o > ap = 2o € F~(V)}
and £ = {(o,V):a € Iy,y € V and V is f-open} and an ordering > on £ as follows:
“&,V) > (a,V) =V CVand &> a’. Define ¢ : & — I by o((3,V)) = 8. Then ¢
is increasing and cofinal in I, so ¢ defines a subnet of (24)aecr. We denote the subnet
(28)(8,v)e¢- On the other hand, for any (3,V) € &, if 3 > 3 then 25 € F~ (V) and we
have F(z3) NV = F(xg) NV # ¢. Pick yg € F(23) NV # ¢. Then the net (yg)s,v)ee
is B-convergent to y. To see this, let Vj be a #-open set containing y. Then there exists
Bo € I such that ¢((6o, Vo)) = o and yg, € V. If (3,V) > (Bo, Vo) this means that
B> Bo and V C Vy. Therefore, yg € F(23)NV = F(xg)NV C F(zg) NV, so yg € V.
Thus (yg)(s,v)ee is 0-convergent to y.

(9)=(1). Suppose (1) is not true, i.e. F is not l.s.f.c. at xg. Then there exists
a f-open set V C Y so that 2o € F~(V) and for each open set U C X containing
xo, there is a point zy € int(clU) for which zy ¢ F~ (V). Let us consider the net
(#U)Uer(zy) Where 7(x0) is the system of T-neighborhoods of 9. Obviously (2v)yer(z)
is 6-convergent to xg. Let yo € F(xo) N V. By (9), there is a subnet (zy)wew of
(TU)ver(ze) and yu € F(2y) like (yu)wew is O-convergent to yo. As yo € V and
V C Y is a B-open set, there is wy € W so that w > 1wy implies y,, € V. On the
other hand, (zuw)wew is a subnet of the net (7)yer(z,) and so there is a function
h : W — 7(x0) such that z, = () and for each U € 7(x0), there is wy € W such
that h(we) > U. If w > wWo, then h(w) > h(wo) > U. Let us consider wy € W so
that wg > wo and wg > wy. Therefore, y,, € V for each w > wy. By the definition of
the net (zv)ver(ay), We have F(z,) NV = F(zpw) NV =0 and y,, ¢ V. This is a
contradiction and so F'is l.s.f.c. at xg.

THEOREM 2. For a multifunction F' : (X,7) — (Y,v), the following statements
are equivalent.
(1) Fis us.fc.
(2) For any #-open set V C Y and for each z of X with F(z) C V| there is a regular
open set U containing x such that F(U) C V.



I. Zorlutuna and Y. Kiiciik 51

(3) F: (X,7s) — (Y,vg) is us.c.

(4) FT (V) C X is 6-open in X for every f-open set V of Y.

(5) F~(K) C X is 6-closed in X for every #-closed set K of Y.

(6) The induced mapping f : (X,7) — (2Y, (vp){7) is super continuous.

(7) The induced mapping f : (X 7s) — (2, (vg)7;) is continuous.

(8) For each x € X and for each net (z4)qer which is é-converging to x and any
f-open set V with F(z) C V, there exists ag € I such that o > «p implies
F(zq) CV.

The proof is similar to that of Theorem 1, and is omitted.

For a given multifunction F' : X — Y, the graph multifunction Gp : X — X xY
is defined as Gp(z) = {z} x F(z) for every € X. In [10], it was shown that for a
multifunction F: X — Y, GL(A x B) = AN F*(B) and Gn(A x B) = AN F~(B)
where AC X and BCY.

THEOREM 3. If the graph multifunction of F : X — Y is u(l).s.f.c., then F is
u(l).s.f.c.

PROOF. We shall prove only the case where F'is l.s.f.c. Let x € X and V be a -
open set in Y such that x € F~ (V). Then Gp(z)N(X xV) = {z} x F(x))N(X xV) =
{z} x (F(x)NV) # 0 and X x V is #-open in X x Y by Theorem 5 in [6]. Since
the graph multifunction G is l.s.f.c., there exists an open set U containing x such
that z € int(clU) implies Gr(z) N (X x V) # (. Therefore, we obtain int(clU) C
Gr(X x V) =F~(V) from above equalities. Consequently, F' is 1.s.f.c.

PROPOSITION 4. Let (X,7) be a topological space, A C Y an open set and
U C X a regular open set. Then W = ANU is regular open set in A [3].

THEOREM 5. For a multifunction F': X — Y, the following statements are true.

a) If Fis u(l).s.f.c. and A is an open set of X, then F' |4: A — Y is u(l).s.f.c.

b) Let {A, : a € I} be a regular open cover of X. Then a multifunction F': X — Y
is u(l).s.f.c. iff the restrictions F |4 : Aq — Y are u(l).s.f.c. for every o € I.

The proof is obvious from the above proposition and we omit it.

THEOREM 6. If F: X — Y is a 1.6-c. multifunction and G : Y — Z is a lLs.f.c.
multifunction, then G o F : X — Z is a L.s.f.c. multifunction.

PROOF. Let V be a f-open set of Z. We know that (Go F)~ (V) = F~ (G~ (V)).
Since G is l.s.f.c., G (V) is a 6-open set in Y and since F is L.6-c., F~ (G~ (V)) is an
8-open set in X by Theorem 2.2 in [3]. Thus we obtain that (G o F)_(V) is 6-open in
X, and so Go F is l.s.f.c.

A multifunction F : X < Y is said to be point closed (resp. point compact) iff for
each x € X, F(z) is closed (resp. compact) in Y.

THEOREM 7. Let F : (X,7) — (Y,v) be a point compact and u.s.f.c. multifunc-
tion. If A is N-closed in X, then F'(A) is vg-compact in Y.

PROOF. Let A be a N-closed set in X, and ¥ be vg-open cover of F(A). If a € A,
then F(a) C UX. Since vy C v and F(a) is compact, there exists a finite subfamily
Yn(a) of ¥ such that F(a) C UX,(,). Let U, 4 be V. V; is a f-open set in Y. Since
F is u.s.f.c. at a, there exists an open set U, of X such that a € int(clU,) C FT(V,).
Therefore, ¥ = {U, : a € A} is an open cover of A. Since A is N-closed set in X,
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there exist a1, ag, ..., ar, € A such that A C U{int(clU,,) : a; € A,i=1,2,...,k}. So we
obtain

F(A) F(U{int(clUy,,) 1 a; € A,i =1,2,...,k})
UV, tai € Ayi = 1,2, ..., k}

U{UEn(ai) ra; € A,i =1,2, ,k}

N 1NN

Thus F(A) is vg-compact in Y.

We know that in almost regular space (Y, v), quasi H-closedness and vg-compactness
are the same [18]. Therefore, we have the following corollary.

COROLLARY 8. Let F': (X,7) — (Y,v) be a point compact and u.s.f.c. multi-
function. If X is nearly compact and F is surjective, then Y is vg-compact. In addition,
if (Y,v) is almost regular, then space (Y, v) is quasi H-closed.

3 Strongly Faintly Continuous Multifunctions

In this section, we define upper (lower) strongly faintly continuous multifunctions and
we obtain many characterizations and basic properties of these multifunctions.

DEFINITION 2. A multifunction F' : X — Y is said to be (a) upper strongly
faintly continuous (briefly u.str.f.c.) at a point x € X if for each #-open set V in Y
with F(x) C V, there exists an open set U containing x such that F(clU) C V; (b)
lower strongly faintly continuous (briefly l.str.f.c.) at a point € X if for each §—open
set V in Y with F(z) NV # (), there exists an open set U containing = such that
F(z) NV # ( for every z € clU; and (c) upper (lower) strongly faintly continuous on
X if it has the property at each point z € X.

As an example, let X = {0, 1} with topology 7 = {0, X, {0}}, let Y = {a, b, c} with
topology v = {0,Y,{a}, {b},{a,b}}, and let F: X — Y be defined as F(0) = {a} and
F(1) = {a,b}. Then F is u(l).str.f.c. since the only §—open set in Y is Y itself.

COROLLARY 9. If a multifunction F is u(l).str.f.c., then F is u(l).s.f.c.

Note that the converse of the above corollary is false in general. Indeed, in Example
1, Fis u.s.f.c., but F' is not u.str.f.c at 1 € X. Also, in Example 2, F' is l.s.f.c., but F'
is not Lstr.f.c at 0 € X.

THEOREM 10. For a multifunction F : (X, 7) — (Y, v), the following statements
are equivalent.
(1) F is Lstr.f.c.

(2) F: (X,79) — (Y,vg) is Ls.c.

(3) F:(X,7) — (Y,vp) is L.s.0—c.

(4) F~(V) C X is #-open in X for every #-open set V of Y.

(5) FT(K) C X is f-closed in X for every 6-closed set K of Y.

(6) The induced mapping f : (X,7) — (2, (vp);,) is strongly f-continuous.

(7) The induced mapping f : (X, 79) — (2, (vp)y,) is continuous.

(8) For each x € X and for each net (z4)aer which is r-converging to x and any

f-open set V with F(z) NV # 0, there exists oy € I such that o > «ap implies
F(xa) NV #0.
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(9) For each y € F(z) and for every net (4 )aes which is r-converging to x, there
exists a subnet (zs)see of the net (v4)aer and a net (ys)pg,v)ee in Y with
Y € F(zg) is f-convergent to y.

THEOREM 11. For a multifunction F : (X,7) — (Y, v), the following statements
are equivalent.
(1) F is u.str.f.c.

2 (X 7'9) (Y, Ug) is u.s.c.

3) F:(X,7) — (Y,vy) is u.s.b-c.

4) FH(V ) C X is f-open in X for every #-open set V of Y.
F~(K) C X is f-closed in X for every #-closed set K of Y.

6) Induced mapping f : (X,7) — (2Y, (vg)7) is strongly 6-continuous.

7) Induced mapping f : (X 79) — (2¥, (vg)}) is continuous.

8) For each x € X and for each net (z4)aes which is r-converging to x and any
f-open set V with F(z) C V, there exists ap € I such that a > ag implies
F(zy) CV.

THEOREM 12. If the graph multifunction of F' : X — Y is u(l).str.f.c., then F' is
u(l).str.f.c.

PROOF. We shall only prove the case where F' is u.str.f.c. Let x € X and V be
a f-open set in Y such that @ € F™ (V). Then Gp(z) C X x V and X x V is 6-open
in X x Y by Theorem 5 in [6]. Since the graph multifunction Gr is u.str.f.c., there
exists an open set U containing « such that Gg(clU) C X x V. Therefore, we obtain
U C GE(X x V) = F*(V). Consequently, F is u.str.f.c.

THEOREM 13. If F: X — Y and G : Y — Z are u(l).str.f.c. multifunctions, then
Go F : X — Z u(l).str.f.c. multifunction.

(2) F
(3)
(4)
(5)
(6)
(7)
(8)

The proof is similar to that of Theorem 5 by Theorem 7 and Theorem 8.

The graph G(F) of the multifunction F' : X < Y is f-closed with respect to X
if for each (z,y) ¢ G(F), there exist an open set U containing x and an open set V
containing y such that (clU x V) NG(F) = 0.

THEOREM 14. Let F : (X,7) — (Y,v) be a point closed multifunction. If F' is
w.str.f.c. and assume that Y is regular, then G(F) is 6-closed with respect to X.

PROOF. Suppose (z,y) ¢ G(F). Then we have y ¢ F(x). Since Y is regular, there
exist disjoint open sets Vi, V5 of Y such that y € V4 and F(z) C V,. By regularity
of Y, V5 is also f-open in Y. Since F is u.str.f.c. at x, there exists an open set U
in X containing x such that F(clU) C V,. Therefore, we obtain € U, y € V; and
(x,y) €U x V1 C(X xY)—G(F). So G(F) is f-closed with respect to X.

THEOREM 15. Let F : (X,7) — (Y,v) be a point compact and u.str.f.c. multi-
function. If A is H-set, then F(A) is vg-compact in Y.

PROOF. Let A be a H-set and ¥ be vg-open cover of F(A). If a € A, then
F(a) C UX. Since vg C v and F(a) is compact, there exists a finite subfamily X,,4)
of ¥ such that F(a) C U, ). Let UX,4) be V,. V, is a f-open set in Y. Since
F is ustr.f.c. at a, there exists an open set U, of X such that a € clU, C FT(V,).
Therefore, ¥ = {U, : a € A} is an open cover of A. Since A is H-set, there exist
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ai,as, ...,ar € A such that A C U{cU,, : a; € A,i=1,2,...,k}. So we obtain

F(A) C F(U{cU,, :a; € Aji=1,2,...,k})
C UV, ia;€Ai=1,2 ..k
- U{UEn(M) ra; € A,i =1,2, ,k}

Thus F(A) is vg—compact in Y.

COROLLARY 16. Let F : (X,7) — (Y,v) be a point compact and u.str.f.c.
multifunction. If X is quasi H-closed and F' is surjective, then Y is vp-compact. In
addition, if (Y, v) is almost regular, then space (Y, v) is quasi H-closed.

THEOREM 17. Let F : (X,7) — (Y, v) be a point closed and u.str.f.c. multifunc-

tion. If F satisfies x1 # x2 = F(x1) # F(x2) and Y is a regular space, then X will be
Hausdorft.

PROOF. Let distinct x1, z2 belong to X. Then F(z1) # F(x2). Since F is point
closed and Y is regular, for all y € F(z1) with y ¢ F(x2), there exist #-open sets V7,
Vs containing y and F'(z2) respectively such that V3 NV, = . Since F is u.str.f.c. and
F(z2) C Vs, there exists an open set U containing x2 such that F(clU) C V,. Thus
21 ¢ clU. Therefore, U and X — clU are disjoint open sets separating x1 and xs.

The following example shows that if upper strongly faintly continuity is replaced
by upper semi continuity, Theorem 17 will be false.

EXAMPLE 3. Let X = {a,b,c} with the topology 7 = {0, X, {a}{c}{a,c}} and
Y = [0, 1] with the usual topology. Define the multifunction F' : X — Y, by F(z) =
[0,1/4] for © = a, F(x) =Y for x = b and F(x) = {1/3} for x = ¢. Then F is point
closed, u.s.c. and Y is regular, but X is not Hausdorff.

We know that a space (Y, v) is regular iff v = vg. Therefore, for a multifunction
which is defined on a regular space, strongly -continuousness and strongly faintly
continuousness are equivalent. Hence, the proofs of the following corollaries are similar
to those of [2]. First, if F : (X,7) — (Y,v) is a one-to-one point compact, u.str.f.c.
multifunction and Y is a Ts-space, then X is Urysohn. Next, if F': (X, 7) — (Y,v) is
a multifunction and Y is a regular space, and if G is u.str.f.c., then X is a regular
space. Here a multifunction F' : (X,7) — (Y,v) is one-to-one in case x1 # xo2 =
F(z1) N F(x) = 0 for all z1,x5 € X. However, if upper strongly faintly continuity is
replaced by upper semi continuity, the last corollary will be false in general. Indeed,
let X = {a,b,c} with the topology 7 = {0, X,{a},{a,b}} and Y = [0,1] with the
usual topology. Define the multifunction F : X — Y, by F(z) = (1/3,2/3) for x = a,
F(z) = (1/4,3/4) for x = b and F(z) =Y for x = c. Then the graph of F is u.s.c. and
Y is regular, but X is not regular.
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