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Abstract

In this note, oscillation criteria are obtained for a class of nonlinear neutral
difference equations.

Oscillatory behaviors of neutral difference equations of the form
A (:En _pnxn—T) + GnTn-6o=0,n=0,1,.. (1)

have been explored to some extent in a number of studies [1-3]. However, relatively
few results are known for their nonlinear extensions of the form

A(xy —pnTp—r)+q, max z3=0,n=0,1,.... (2)

s€[n—o,n]

Nonlinear functional equations involving the maximum function are important since
they appear naturally in automatic control theory, see e.g. Popov [4]. Some of the
qualitative theory of these equations has been developed recently, see e.g. [5-8]. In this
note, we will consider their oscillatory behaviors.

We will assume that 7 and o are positive integers, that {p,} and {¢,} are nonneg-
ative real sequences, and {g,} has a positive subsequence. Let y = max{7,0}. By
a solution of (1) or (2), we mean a real sequence {xn}zo:_# which satisfies (1) or (2)
respectively for n > 0. Such a solution is said to be oscillatory if it is neither eventually
positive nor eventually negative.

It is easily seen that {x,} is an eventually positive solution of equation (1) if, and
only if, {—x,} is its eventually negative solution. However, such a property is not valid
for equation (2). Instead, {x,} is an eventually positive solution of (2) if, and only if,
{—z,} is an eventually negative solution of the equation

A(xy — ppp—r)+¢, min z,=0,n=0,1,.... (3)

s€n—o,n]

Thus, all solutions of (2) are oscillatory if, and only if, both (2) and (3) do not have
any eventually positive solutions.
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LEMMA 1. Assume that there exists a nonnegative integer N > 0 such that
PN+jr < 1for j=0,1,2,... Let {z,} be an eventually positive solution of (2) or (3).
Set

Yn = Tn — PnTn—1 (4)
for all large n. Then y,, > 0 eventually.

The proof is similar to the proof of Lemma 1 in [2].

THEOREM 1. Assume that there exists a nonnegative integer N > 0 such that
PN4jr < 1for j =0,1,2,.... Suppose further that either p, > 0 or g,, does not vanish
identically over any set of consecutive integers of the form {a,a+1,..,a + o}. Then
equation (2) has an eventually positive solution if, and only if, the following functional
inequality

A(zp — ppTpn—r)+ ¢, max x5 <0,n=0,1,... (5)

s€n—o,n]

has an eventually positive solution; and equation (3) has an eventually positive solution
if, and only if, the functional inequality

A(zy — PpZn—r) + Gn [min ]:vs <0,n=0,1,... (6)
sen—o,n
has an eventually positive solution.
The proof of Theorem 1 is similar to that of Theorem 1 in [2], and is thus omitted.
THEOREM 2. Assume that there exists a nonnegative integer N > 0 such that

PN4jr < 1for j =0,1,2,.... Suppose further that there exists some positive integer T'
such that the functional inequality

T—1 3

Ayn +qn _min ZHps irYn—r <0

s€[n—o,n] —0 im0

does not have any eventually positive solutions. Then all solutions of (2) oscillate.

PROOF. If {z,} is an eventually positive solution of (2), then Ay, <0 and y, =
n — PnTn—r > 0 eventually. Thus,

Tn = Yn + PnTp_r = Yn + PnYn—r + PnPn—rTn—2r
T-1
= . 2Yn+DnYn—r+t ..+ H Pn—irYn—(i+1)7
1=0
T-1 j
> Hpn—i‘ryn—T'
=0 i=0
Hence,
T—1 j T-1 j
max s> max = max
o hax s = P L Z Hps itYs—1 = selno ] Z Hps iTYn—r-

j=0 i=0 j=0i=0
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Substituting the last inequality into (2), we have

T-1 j
Ayn + dn max ] Z Hps—iTyn—T S 07

Eln—o,n| = .
s€n—o,n =00

which is a contradiction. If {z,} is an eventually negative solution of (2), then z,, = —z,
is an eventually positive solution of equation (3). Similarly, we have

T-1 j Tr-1 j
Ayn + dn min Z Hps—iTyn—T S Ayn + dn max ] Z Hps—iTyn—T S O;

s€[n—o,n] =0 i=0 s€n—o,n 20 iZo
This is also a contradiction. The proof is complete.
For the equation
A(xyp —2p—7)+qgn max z;,=0,n=0,1,.., (7)

s€n—o,n]
we have the following result.
THEOREM 3. Equation (7) has nonoscillatory solutions if, and only if,

1
AQZn_l + ;qnzn =0 (8)

also has nonoscillatory solutions.

PROOF. Assume that {x,} is an eventually positive solution of (7). In view of
Lemma 1, we see that there is an integer Ny such that z,,_- > 0,y, =z, — T+ >0,
and Ay, <0 for n > Ny. Set m = min{an, —r, TN, —741, -, TN, —1}. Forn > Ny + 7,
there exists a positive integer k such that

N1+kT§’rL<N1+(]€+1)T
and

k—1 k—1
Tn = Tn—kr T Zyn—jT >m+ Zyn—jT-
j=0 j=0

Furthermore, since Ay, < 0 for n > Ni, and since n — kT + 7 < Ny + 27 = N,

k—1
T Z Yn—jr = Tyn—(k—l)T + Tyn—(k—2)7' + ...+ TYn
=0

Y

(yn—(k—l)T + Yn—(k—1)7+1 + .+ yn—(k—Q)T—l)
+(yn—(k—2)7' + Yn—(k—2)7+1 +.+ Yn—(k—3)1—1
+..+ (yn +Ynt1 + ... + yn+7—l)

n
Z Yis

i=Ng

Y
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we have n
1
Ty 2> m+ - Z Yi.-
i=No
Let .
1
Zp =M+ ; Z Yi,
i=No
then z, > 0 and
1 n
TNz Guzn = Ayt [mA= D wi
T ’i:NQ

1 S
- An n - i
Yn + ¢n max <m+TZy>

s€[n—o,n] Py
=1iV2

< Ay,+¢q, max xzz=0.
s€[n—o,n]
In view of Lemma 1, we know that equation (8) has an eventually positive solution. If
{z,} is an eventually positive solution of the equation
A(xy —Tp—r)+ ¢, min z;=0,n=0,1,..., (9)
s€[n—o,n]
we can also prove that
TA2Zn—1 + qnZn—o < 0

has an eventually positive solution. In view of Theorem 2 in [3], we know that equation
(8) has an eventually positive solution. We now show that the converse holds. Let {z,}
be an eventually positive solution of (8), then it is positive and concave for all large
n, so that {Az,} is eventually positive and nonincreasing. Thus it is easy to see that
there exists a sufficiently large integer N such that 0 < 7Az,_1 < z,_, for n > N.
Let

TAZ,_1 n>N
H, = (n—N+71)Azy-1 N—7<n<N ,
0 n<N-—-T

and let

oo

Tp = 2N-7 —TAzZN_1 + ZHn—i‘ra n > 0.

i=0

In view of the definition of H,, it is clear that 0 < z,, < oo for all n > 0, that
Max {TN 7, TN 741, TN-1} = ZN—r — TA2ZN_1 + (T = 1)Azy 1 < 2y -+,
and that
Tp — Tp_r = Hp, = TAZn—l

for n > N. For any n which satisfies N <n < N 4+ 7 — 1, we see that

n—1 n—1
Ty = TAZn—l + Ty < Z Azi + Ty < Z Azi + ZN—7 = Zn-

1=n—T i=N-—T1
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By induction, it is easy to prove that for any n which satisfies N+ k7 <n < N+(k+1)7
where £ =0,1,2, ..., z, < z, is still valid. Thus
A(zn — Tn—r) +¢n max 2 <TA*2 1 4 Gpzn =0

s€n—o,n
as desired. Similarly, we have also
n—1 n—1+o
Ty < Z Azi+z2v_r < Z Az 4+ 2N—r = Znto-
i=N—T1 i=N—1
Thus, we have
AXy —Tp—r)+¢q, min z, < TA%z, 1 4+q, min  zg,
s€n—o,n] s€[n—o,n]

= TA2Zn_1 + qnzn = 0.

The proof is complete.

As an important corollary, the equation

Q
Az, —Tp_r)+——— min 2,=0,n=0,1,2,....
( ) (n—|— 1)2 s€n—o,n]

in view of Theorem 3, is oscillatory if, and only if, /7 > 1/4.

We make several additional remarks. Let us say that a solution of (1) or (2) is
strongly oscillatory if for any given nonnegative integer N, there is a corresponding
integer m > N such that z,,,x,,,+1 < 0. Assume that g, > 0 for n > 0. In this case, let
{z,} be a nonnegative solution of (1) or (2), and let y,, be defined by (4). We have
already seen that y,, > 0 and Ay, < 0 eventually. Note that x, > y, for all large n.

THEOREM 4. Assume that there exists a nonnegative integer N > 0 such that
PN4jr < 1 for j = 0,1,2,... . Suppose further that ¢, > 0 for n > 0. Then every
nontrivial solution of equation (1) is strongly oscillatory if, and only if, the inequality

A(Tp — Pnp—r) + @nTn—o <0,:n=0,1,...

does not have any eventually nonnegative solutions, and equation (2) has a nonnegative
solution if, and only if, (5) has a nonnegative solution.

THEOREM 5. Assume that there exists a nonnegative integer N > 0 such that
PN+jr < 1for j =0,1,2,... . Assume further that ¢, > 0 for n > 0, If there exists
some integer T  such that the functional inequality

T-1 3
Ayn + dn emax ] Z Hps—iTyn—T S O

s€n—o,n] £ -
7=0 i=0

does not have an eventually positive solution, then equation (2) does not have an
eventually nonnegative solution. If there exists some integer T' such that the functional
inequality
T—1 j
Ayy + qn Z Hpn—iryn—T <0

=0 i=0
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does not have an eventually positive solution, then every solution of equation (1) is
strongly oscillatory.

THEOREM 6. Assume that ¢, > 0 for n > 0. Then all solutions of the equation
A (:En - xn—‘r) + @rTp—o = 07

are strongly oscillatory if, and only if, equation (8) is oscillatory; and equation (7)
has an eventually nonnegative solution if, and only if, (8) has an eventually positive
solution.

The proofs of Theorem 4, Theorem 5 and Theorem 6 are similar to the proofs of
Theorem 1, Theorem 2 and Theorem 3 respectively. They will be omitted. Results
analogous to Theorem 4, Theorem 5 and Theorem 6 are not valid for equation (3). For
example, the sequence {sin(nmr/2) — 1} is a nonpositive solution of the equation

A2y — Tp—g) +qn max x5=0,
s€[n—6,n]

where {g,} is any real sequence.
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