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Periodic Solutions of Abstract Di®erence Equations ¤
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Abstract

We investigate whether a control mechanism can be introduced to support a
periodic solution for an abstract di®erence equation modeling a di®usion problem.
An existence theorem is proved and estimates of the norms of the periodic solution
is also obtained.

1 Introduction

To motivate what follows, consider a large number of equally divided cells contained
in a \very long" straight tube, each of which contains a certain solute dissolved in a
unit volume of solvent. These cells are separated from each other by semipermeable
membranes through which the solute may °ow but not the solvent. Let us denote

by u
(t)
i the amount of solute dissolved in the i-th cell and at di®erent time periods

t = 0; 1; 2; ::: . Since each cell contains a unit volume of solvent, u
(t)
i also represents the

concentration of solute in the i-th cell. During the time period t; if the concentration

u
(t)
i¡ 1 is higher than u

(t)
i ; solute will °ow from the (i ¡ 1)-th cell to the i-th cell: The

amount of increase is u
(t+1)
i ¡ u

(t)
i ; and it is reasonable to postulate that the increase is

proportional to the di®erence u
(t)
i¡ 1 ¡ u

(t)
i : Similarly, solute will °ow from the (i + 1)-th

cell to the i-th cell if u
(t)
i+1 > u

(t)
i : Thus, it is reasonable the total e®ect is

u
(t+1)
i ¡ u

(t)
i = °

³
u

(t)
i¡ 1 ¡ u

(t)
i

´
+ °

³
u

(t)
i+1 ¡ u

(t)
i

´
;

where ° is a proportionality constant. If the permeability of the membrane is time de-
pendent, and if a time dependent control is introduced, it is plausible that the governing
equation becomes

u
(t+1)
i ¡ u

(t)
i = °t

³
u

(t)
i+1 ¡ 2u

(t)
i + u

(t)
i¡ 1

´
+ G

³
t; u

(t)
i

´
:

By writing
n

u
(t)
i

o1

i=¡ 1
as xt; we may write the above equation in the form

xt+1 ¡ xt = °tJxt + gt(xt); t = 0; 1; 2; :::;
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where J is a doubly in¯nite matrix with diagonal elements equal to ¡ 2; and superdiag-
onal as well as subdiagonal elements equal to 1:

Existence of periodic solutions to di®erence equations similar to the one derived
above have been studied by several authors, see e.g. [1-5]. Here, an important question
arises naturally as to whether the control mechanism can maintain a periodic solution
for the above equation. To this end, let C be the set of complex numbers and let X be
a complex Banach space with a norm k¢k : We will denote the identity operator de¯ned
on X by I and denote the closed ball with radius r by  r; i.e.  r = fv 2 Xj kvk · rg ;
where 0 < r · 1: Consider sequences of the form fxkg1

k=0 in X which satis¯es the
perturbed di®erence equation

xk+1 = Akxk + Fk(xk); k = 0; 1; 2; :::; (1)

where fAkg1
k=0 is a periodic sequence of bounded operators de¯ned on X such that

Ak = Ak+T ; k ¸ 0; (2)

and
I ¡ A0A1 ¢¢¢AT ¡ 1 is invertible, (3)

and fFkg1
k=0 is a periodic sequence of functions from  r into X such that

Fk = Fk+T ; k ¸ 0; (4)

and
kFk(x) ¡ Fk(y)k · q kx ¡ yk ; k = 0; 1; :::; T ¡ 1; x; y 2  r; q > 0: (5)

In the special case when X = Cn; Ak = A for k ¸ 0 and kFk(x)k · ® kxk + ¯ for
k ¸ 0 and x 2 X; equation (1) has been studied [6], and a periodic solution is found
under suitable conditions on A; ® ; and ¯ : Here, we will also be interested with the
existence of periodic solutions of our general abstract di®erence equation (1), as well
as estimates of their norms.

2 Main Results

To accomplish our goals, let us set

U(k; j) =
k¡ 1Y

i=j

Ai; 0 · j < k · T;

and set U(j; j) = I for j ¸ 0: Then it is easily checked that the unique solution of the
equation

yk+1 = Akyk + fk; fk 2 X; k = 0; 1; :::;

is given by

yk = U(k; 0)y0 +
k¡ 1X

j=0

U(k; j)fj ; k = 1; 2; ::: :
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Thus the periodic boundary value problem

yk+1 = Akyk + fk; fk 2 X; k = 0; 1; :::; T;

y0 = yT

has a solution provided

y0 = yT = U(T; 0)y0 +
T ¡ 1X

j=0

U(T; j)fj ;

or

y0 = (I ¡ U(T; 0))
¡ 1

T ¡ 1X

j=0

U(T; j)fj ;

and in such a case, this solution is given by

yk = U(k; 0) (I ¡ U(T; 0))
¡ 1

T ¡ 1X

j=0

U(T; j)fj +

k¡ 1X

j=0

U(k; j)fj ; 0 · k · T; (6)

and its maximum norm satis¯es

max
0· k· T ¡ 1

kykk · °T max
0· k· T ¡ 1

kfkk ; (7)

where

°T = max
0· k· T ¡ 1

T ¡ 1X

j=0

©°°U(k; 0)(I ¡ U(T; 0))¡ 1U(T; j)
°° + kU(k; j)k

ª
: (8)

THEOREM 1. Under the conditions (2)-(5), if °T (qr + lT ) < r < 1; where
lT = max0· k· T ¡ 1 kFk(0)k ; then the periodic boundary value problem

xk+1 = Akxk + Fk(xk); k = 0; 1; :::; T ¡ 1; (9)

x0 = xT ; (10)

has a unique solution.

PROOF. Let © be the Cartesian product XT : When equipped with the maximum
norm de¯ned by

k(x0; :::; xT ¡ 1)k© = max
0· k· T ¡ 1

kxkk ; (x0; :::; xT ¡ 1) 2 © ;

© becomes a Banach space. Let

G = fx 2 © j kxk© · rg :
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Furthermore, let ª : G ! © be de¯ned as follows: for each x = (x0; :::; xT ¡ 1) 2 G;
de¯ne (ª x)0 = 0 and

(ª x)k = U(k; 0) (I ¡ U(T; 0))
¡ 1

T ¡ 1X

j=0

U(T; j)Fj(xj) +

k¡ 1X

j=0

U(k; j)Fj(xj)

for 0 · k · T ¡ 1: Then for each x 2 G;

kª xk© · °T max
0· k· T ¡ 1

kFk(xk)k · °T max
0· k· T ¡ 1

fq kxkk + lT g · °T (qr + lT ) < r;

which implies ª x 2 G: Furthermore,

kª x ¡ ª yk© · °T q kx ¡ yk© ; x; y 2 G:

Since °T (qr + lT ) < r implies 0 · °T lT < r(1 ¡ °T q); we see that ª is a contraction
mapping on G: By Banach's ¯xed point theorem, ª has a unique ¯xed point u in G:
It is easily seen that u is a solution of (9)-(10). The proof is complete.

We remark that the unique solution asserted in the above theorem satis¯es

max
0· k· T ¡ 1

kxkk · °T lT
1 ¡ q°T

: (11)

Indeed, if fxkgT
k=0 is such a solution, then in view of (7), (8) and (5), we will have

max
0· k· T ¡ 1

kxkk · °T max
0· k· T ¡ 1

kFk(xk)k max
0· k· T ¡ 1

kxkk · °T max
0· k· T ¡ 1

fq kxkk + lT g ;

which implies (11).
There are at least two important variations of Theorem 1. First of all, if r = 1; we

may replace the assumption °T (qr + lT ) < r < 1 by °T lT < 1 in the above theorem:
Under the conditions (2)-(5) where r = 1, if °T lT < 1; then the periodic boundary

problem (9)-(10) has a unique solution fxkgT
k=0 which satis¯es (11). Second, if we

assume that °T lT > 0; then the condition °T (qr + lT ) < r in the above Theorem
can be replaced by the condition °T (qr + lT ) · r : Under the conditions (2)-(5) and
°T lT > 0; if °T (qr + lT ) · r; where lT = max1· k· T ¡ 1 kFk(0)k ; then the periodic

boundary value problem (9)-(10) has a unique solution fxkgT
k=0 which satis¯es (11).

The proofs of these statements are not much di®erent from that of Theorem 1 and
hence omitted.

The constant °T de¯ned by (8) is di± cult to evaluate. To simplify matters, let us
set Qj;j = 1 for j ¸ 0;

Qk;j =

k¡ 1Y

i=j

kAik ; 0 · j < k · T;

and

Qk;j =
1

Qj;k
; 0 · k < j · T:
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Then kU(k; j)k · Qk;j for 0 · k · j · T ¡ 1 and Qk;jQj;i = Qk;i for i · j · k:
Furthermore, if QT;0 < 1; then

°T · max
0· k· T ¡ 1

T ¡ 1X

j=0

©
Qk;0(1 ¡ QT;0)

¡ 1QT;j + Qk;j

ª

· max
0· k· T ¡ 1

T ¡ 1X

j=0

Qk;0

©
(1 ¡ QT;0)

¡ 1QT;0 + 1
ª

Q0;j

· 1

1 ¡ QT;0
max

0· k· T ¡ 1
Qk;0

T ¡ 1X

j=0

1

Qj;0
:

THEOREM 2. Assume that QT;0 < 1: Let lT = max1· k· T ¡ 1 kFk(0)k ; and

½T =
1

1 ¡ QT;0
max

0· k· T ¡ 1
Qk;0

T ¡ 1X

j=0

1

Qj;0
:

Under the conditions (2)-(5), if ½T (qr + lT ) < r; then the boundary value problem

(9)-(10) has a unique solution fukgT
k=0. Moreover, the inequality

max
0· k· T ¡ 1

kukk · ½T lT
1 ¡ q½T

is valid.

The proof is similar to that of Theorem 1 and thus omitted.

3 An Example

We now turn to our di®usion problem. Let us ¯nd a control such that our problem can
be written in the form

u
(t+1)
i ¡ u

(t)
i = atu

(t)
i+1 ¡ btu

(t)
i + ctu

(t)
i¡ 1 + G

³
t; u

(t)
i

´
;

where i = 0; § 1; :::; and t = 0; 1; ::: : The above partial di®erence equation can be
written in the form

ut+1 = Atut + Ft(ut); t = 0; 1; 2; :::;

where At is a doubly in¯nite matrix with diagonal elements equal to 1 + bt; and su-
perdiagonal and subdiagonal elements equal to at and ct; respectively. Suppose fatg ;
fbtg and fctg are T -periodic real sequences, then the matrix sequence fAtg is also T -
periodic. Take X to be the space of doubly in¯nite bounded sequences endowed with
the supremum norm. Then

kAtk = j1 ¡ btj + at + ct:
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Therefore,

Qk;j =

k¡ 1Y

i=j

(j1 ¡ bij + ai + ci) :

Suppose further that QT;0 < 1 (which is satis¯ed, for example, when at + ct < bt < 1
for all t:) Then the quantity ½T can be calculated in a straightforward manner, and
Theorem 2 can then be applied.
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