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Periodic Solutions of Abstract Difference Equations *
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Abstract

We investigate whether a control mechanism can be introduced to support a
periodic solution for an abstract difference equation modeling a diffusion problem.
An existence theorem is proved and estimates of the norms of the periodic solution
is also obtained.

1 Introduction

To motivate what follows, consider a large number of equally divided cells contained
in a “very long” straight tube, each of which contains a certain solute dissolved in a
unit volume of solvent. These cells are separated from each other by semipermeable
membranes through which the solute may flow but not the solvent. Let us denote
by ul(-t) the amount of solute dissolved in the ¢-th cell and at different time periods
t=0,1,2,.... Since each cell contains a unit volume of solvent, ugt) also represents the
concentration of solute in the i-th cell. During the time period ¢, if the concentration
uft_)l is higher than ul(-t)7 solute will flow from the (¢ — 1)-th cell to the i-th cell. The
(t+1) (@)

amount of increase is u; u,; ’, and it is reasonable to postulate that the increase is
proportional to the difference ugt_)l - ul(-t). Similarly, solute will flow from the (i + 1)-th

cell to the i-th cell if ufi)l > ul(-t). Thus, it is reasonable the total effect is
W f? = (2 ) o ()
where v is a proportionality constant. If the permeability of the membrane is time de-

pendent, and if a time dependent control is introduced, it is plausible that the governing
equation becomes

WD al? = (a2 4 0) 4.6 (1,0

o0
By writing {u(t)} as x¢, we may write the above equation in the form

i .
i=—00

T4l — T = ’YtJZCt + gt(:z:t), t= O, 1,2, ceny
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where J is a doubly infinite matrix with diagonal elements equal to —2, and superdiag-
onal as well as subdiagonal elements equal to 1.

Existence of periodic solutions to difference equations similar to the one derived
above have been studied by several authors, see e.g. [1-5]. Here, an important question
arises naturally as to whether the control mechanism can maintain a periodic solution
for the above equation. To this end, let C' be the set of complex numbers and let X be
a complex Banach space with a norm ||-||. We will denote the identity operator defined
on X by I and denote the closed ball with radius r by Q,, i.e. Q. ={v € X| ||v|| <7},
where 0 < r < oo. Consider sequences of the form {xz;};~, in X which satisfies the
perturbed difference equation

Tpr1 = Apzr + Fr(xg), k=0,1,2, .., (1)
where {Ak}zozo is a periodic sequence of bounded operators defined on X such that
Ar = Agsr, k>0, (2)
and
I — AgA; - Ap_q is invertible, (3)

and {F} },—, is a periodic sequence of functions from €2, into X such that
Fk:Fk-‘rTakZOa (4)

and
[Fx(z) = Fr@)l < qllz—yll, k=0,1,...,T = 1; z,y € Qy; ¢> 0. ()
In the special case when X = C", Ay, = A for kK > 0 and ||Fj(x)| < al|z| + 8 for
k>0 and = € X, equation (1) has been studied [6], and a periodic solution is found
under suitable conditions on A, «, and 3. Here, we will also be interested with the

existence of periodic solutions of our general abstract difference equation (1), as well
as estimates of their norms.

2 Main Results

To accomplish our goals, let us set

k—1
Uk,j) =[] A 0<i<k<T,

i=j

and set U(j,j) = I for j > 0. Then it is easily checked that the unique solution of the
equation
Yk+1 = Akyk + fka .fk € Xa k= 05 15 B
is given by
k—1

ye = U(k,0)yo + > Uk, j)f5, k=1,2,....
j=0
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Thus the periodic boundary value problem

Yk+1 = Akyk +fk, fk € X, k= 0,1,....,7,

Yo =yr
has a solution provided
T—1
yo=yr =U(T,0)y0+ Y_ U(T,j)fj,
j=0
or
T—1
yo=(I—U(T,0)"" > U5,
j=0
and in such a case, this solution is given by
T—1 k—1
ye = U(k,0) (I = U(T,0))"" Y U, 5)f; + > Uk, j)f;, 0<k<T,  (6)
Jj=0 j=0
and its maximum norm satisfies
<
onax lyell <oz max (1Sl (7)
where
T—1
_ _ -1 ; ;
= Jnax Z:jo UGk = U@, U@ H|+IUENF- 6

THEOREM 1. Under the conditions (2)-(5), if vr(¢r + lr) < r < oo, where
It = maxo<k<r—1 || F%(0)|, then the periodic boundary value problem

Th+1 :Akxk—FFk(ﬂUk), k:O,l,...,T—l, (9)

To = T, (10)
has a unique solution.

PROOF. Let ® be the Cartesian product X”7. When equipped with the maximum
norm defined by

[ (o, ~--;=TT—1)||<1> = OSII?S%(—I el (xo,..s27-1) € P,

® becomes a Banach space. Let

G={acd| |afy<r}.
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Furthermore, let ¥ : G — ® be defined as follows: for each z = (xq,...,x7_1) € G,
define (¥z)p = 0 and

T-1 k—1
(W), = U(k,0) (I = U(T,0))"" > U, j)Fy(x;) + Y _ Uk, j)Fj(x;)
j=0 §=0

for 0 < k <T — 1. Then for each z € G,

el < vr max [ Fula)l <9r max {alloel + I} <o (ar +17) <

which implies ¥z € G. Furthermore,
Wz —Vylly <vrqlle—yle, z.y €G.

Since yr(gqr + Ir) < r implies 0 < yplr < (1 — yrq), we see that ¥ is a contraction
mapping on G. By Banach’s fixed point theorem, ¥ has a unique fixed point u in G.
It is easily seen that u is a solution of (9)-(10). The proof is complete.

We remark that the unique solution asserted in the above theorem satisfies

)TZT
< —_ 11
OSIanaTX 1||5Uk|| 1— (11)

Indeed, if {x }Z:o is such a solution, then in view of (7), (8) and (5), we will have

< <
omax ol <or | max [Fs(en)l max  [loll <yr  max  {qllaxll+1r},

which implies (11).

There are at least two important variations of Theorem 1. First of all, if r = oo, we
may replace the assumption yr(gr + lr) < r < oo by yrlr < 1 in the above theorem:
Under the conditions (2)-(5) where r = oo, if vply < 1, then the periodic boundary
problem (9)-(10) has a unique solution {xk}fzo which satisfies (11). Second, if we
assume that yplr > 0, then the condition y7(¢r + Ir) < r in the above Theorem
can be replaced by the condition yr(gr 4+ lr) < r : Under the conditions (2)-(5) and
yrlp > 0, if yp(gr + lp) < r, where Iy = maxi<p<r—1 ||Fr(0)|, then the periodic
boundary value problem (9)-(10) has a unique solution {zk}{zo which satisfies (11).
The proofs of these statements are not much different from that of Theorem 1 and
hence omitted.

The constant 7 defined by (8) is difficult to evaluate. To simplify matters, let us
set ;5 =1 for j >0,

k—1
Qkyj:HHAi”? 0<j<k<T,
1=j
and

Qk)j: 0<I€<j<T

Q;
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Then [|U(k,j)|| < Qk,j for 0 <k <j < T —1and Q;Qji = Qg fori < j <k.
Furthermore, if Q7,9 < 1, then

yr < o Rax 1Z{Qk0 1= Qro) ' Qrj + Qu;}
= 0<het— 12Qk0{ 1= Qro)™ Qro+1} Qg

1 = 1
< - —.
T 1-Qrp 0<heT—1 o jz::O Qj0
THEOREM 2. Assume that QT70 < 1. Let Iy = maxi<k<7T-1 ||Fk(0)|| , and

T-1

PT = 1—QT0 O<k<T 1QkOZ QL

Under the conditions (2)-(5), if pr(gr + I7) < r, then the boundary value problem
(9)-(10) has a unique solution {uk}fzo. Moreover, the inequality
PTlT

ocmax unll < 7=

is valid.

The proof is similar to that of Theorem 1 and thus omitted.

3 An Example

We now turn to our diffusion problem. Let us find a control such that our problem can
be written in the form

u§t+1) - ul(.t) = atul(-jzl biu ( ) + ctu 1+ G ( ) )
where ¢ = 0,%£1,..., and ¢t = 0,1,... . The above partial difference equation can be
written in the form

Upp1 = Agug + Fy(ue), t=0,1,2, ..,

where A; is a doubly infinite matrix with diagonal elements equal to 1 + by, and su-
perdiagonal and subdiagonal elements equal to a; and ¢;, respectively. Suppose {a;},
{b;} and {c¢;} are T-periodic real sequences, then the matrix sequence {A;} is also T-
periodic. Take X to be the space of doubly infinite bounded sequences endowed with
the supremum norm. Then

| Al = [1 = b;] + a; + .
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Therefore,
k-1

Qry = [T (1=t +a;+c).
i=j
Suppose further that Qro < 1 (which is satisfied, for example, when a; + ¢; < b, < 1

for all ¢.) Then the quantity pr can be calculated in a straightforward manner, and
Theorem 2 can then be applied.

References

[1] A. Halanay, Periodic and almost periodic solutions of systems of finite difference
equations, Arch. Rat. Mech. Anal., 12(1963), 134-149.

[2] R. P. Agarwal and J. Popenda, Periodic solutions of first order linear difference
equations, Math. Comput. Modelling, 22(1)(1995), 11-19.

[3] T.Y.Liand J. Yorke, Period three implies chaos, Amer. Math. Monthly, 82(1975),
985-992.

[4] G. P. Pelyukh, On the existence of periodic solutions of discrete difference equations
(Russian), Uzbek. Mat. Zh., 3(1995), 88-90.

[5] Kh. Turaev, On the existence and uniqueness of periodic solutions of a class of
nonlinear difference equations (Russian), Uzbek. Mat. Zh., 2(1994), 52-54.

[6] M. Gil’ and S. S. Cheng, Periodic solutions of a perturbed difference equation,
preprint.



